These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33262328)

  • 1. Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure.
    Zrimec J; Börlin CS; Buric F; Muhammad AS; Chen R; Siewers V; Verendel V; Nielsen J; Töpel M; Zelezniak A
    Nat Commun; 2020 Dec; 11(1):6141. PubMed ID: 33262328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs.
    Foat BC; Stormo GD
    Mol Syst Biol; 2009; 5():268. PubMed ID: 19401680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of RNA structure on coding sequence evolution in both bacteria and eukaryotes.
    Gu W; Li M; Xu Y; Wang T; Ko JH; Zhou T
    BMC Evol Biol; 2014 Apr; 14():87. PubMed ID: 24758737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population genomics and transcriptional consequences of regulatory motif variation in globally diverse Saccharomyces cerevisiae strains.
    Connelly CF; Skelly DA; Dunham MJ; Akey JM
    Mol Biol Evol; 2013 Jul; 30(7):1605-13. PubMed ID: 23619145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulation at the level of mRNA 3' end formation of the suppressor of forked gene of Drosophila melanogaster is conserved in Drosophila virilis.
    Audibert A; Simonelig M
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14302-7. PubMed ID: 9826695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation.
    Roth FP; Hughes JD; Estep PW; Church GM
    Nat Biotechnol; 1998 Oct; 16(10):939-45. PubMed ID: 9788350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of a "CAGA box" in the APP gene unique to amyloid plaque-forming species and absent in all APLP-1/2 genes: implications in Alzheimer's disease.
    Maloney B; Ge YW; Greig N; Lahiri DK
    FASEB J; 2004 Aug; 18(11):1288-90. PubMed ID: 15208260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle- and terminal differentiation-associated regulation of the mouse mRNA encoding a conserved mitotic protein kinase.
    Lake RJ; Jelinek WR
    Mol Cell Biol; 1993 Dec; 13(12):7793-801. PubMed ID: 7902533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster.
    Gerber AP; Luschnig S; Krasnow MA; Brown PO; Herschlag D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4487-92. PubMed ID: 16537387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequences responsible for transcription termination on a gene segment in Saccharomyces cerevisiae.
    Henikoff S; Cohen EH
    Mol Cell Biol; 1984 Aug; 4(8):1515-20. PubMed ID: 6436686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions.
    Sato MP; Makino T; Kawata M
    BMC Evol Biol; 2016 Feb; 16():35. PubMed ID: 26860869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster.
    Hao H; Allen DL; Hardin PE
    Mol Cell Biol; 1997 Jul; 17(7):3687-93. PubMed ID: 9199302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
    Li Y; Shi W; Wasserman WW
    BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis.
    Kraaijeveld K; Oostra V; Liefting M; Wertheim B; de Meijer E; Ellers J
    BMC Genomics; 2018 Dec; 19(1):892. PubMed ID: 30526508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tempo and mode in evolution of transcriptional regulation.
    Gordon KL; Ruvinsky I
    PLoS Genet; 2012 Jan; 8(1):e1002432. PubMed ID: 22291600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequencing and comparison of yeast species to identify genes and regulatory elements.
    Kellis M; Patterson N; Endrizzi M; Birren B; Lander ES
    Nature; 2003 May; 423(6937):241-54. PubMed ID: 12748633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning the Regulatory Code of Gene Expression.
    Zrimec J; Buric F; Kokina M; Garcia V; Zelezniak A
    Front Mol Biosci; 2021; 8():673363. PubMed ID: 34179082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression divergence is coupled to evolution of DNA structure in coding regions.
    Dai Z; Dai X
    PLoS Comput Biol; 2011 Nov; 7(11):e1002275. PubMed ID: 22125484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting properties of gene-specific regulatory, coding, and copy number mutations in Saccharomyces cerevisiae: frequency, effects, and dominance.
    Gruber JD; Vogel K; Kalay G; Wittkopp PJ
    PLoS Genet; 2012 Feb; 8(2):e1002497. PubMed ID: 22346762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The limits of de novo DNA motif discovery.
    Simcha D; Price ND; Geman D
    PLoS One; 2012; 7(11):e47836. PubMed ID: 23144830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.