BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33262347)

  • 1. Non-invasive single-cell morphometry in living bacterial biofilms.
    Zhang M; Zhang J; Wang Y; Wang J; Achimovich AM; Acton ST; Gahlmann A
    Nat Commun; 2020 Dec; 11(1):6151. PubMed ID: 33262347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BCM3D 2.0: accurate segmentation of single bacterial cells in dense biofilms using computationally generated intermediate image representations.
    Zhang J; Wang Y; Donarski ED; Toma TT; Miles MT; Acton ST; Gahlmann A
    NPJ Biofilms Microbiomes; 2022 Dec; 8(1):99. PubMed ID: 36529755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.
    Jelli E; Ohmura T; Netter N; Abt M; Jiménez-Siebert E; Neuhaus K; Rode DKH; Nadell CD; Drescher K
    Mol Microbiol; 2023 Jun; 119(6):659-676. PubMed ID: 37066636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.
    Mathew B; Schmitz A; Muñoz-Descalzo S; Ansari N; Pampaloni F; Stelzer EH; Fischer SC
    BMC Bioinformatics; 2015 Jun; 16():187. PubMed ID: 26049713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D deeply supervised network for automated segmentation of volumetric medical images.
    Dou Q; Yu L; Chen H; Jin Y; Yang X; Qin J; Heng PA
    Med Image Anal; 2017 Oct; 41():40-54. PubMed ID: 28526212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities.
    Panigrahi S; Murat D; Le Gall A; Martineau E; Goldlust K; Fiche JB; Rombouts S; Nöllmann M; Espinosa L; Mignot T
    Elife; 2021 Sep; 10():. PubMed ID: 34498586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics.
    O'Connor OM; Alnahhas RN; Lugagne JB; Dunlop MJ
    PLoS Comput Biol; 2022 Jan; 18(1):e1009797. PubMed ID: 35041653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.
    Schlafer S; Garcia JE; Greve M; Raarup MK; Nyvad B; Dige I
    Appl Environ Microbiol; 2015 Feb; 81(4):1267-73. PubMed ID: 25501477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepSeeded: Volumetric Segmentation of Dense Cell Populations with a Cascade of Deep Neural Networks in Bacterial Biofilm Applications.
    Toma TT; Wang Y; Gahlmann A; Acton ST
    Expert Syst Appl; 2024 Mar; 238(Pt D):. PubMed ID: 38646063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring microbial communities using light sheet fluorescence microscopy.
    Parthasarathy R
    Curr Opin Microbiol; 2018 Jun; 43():31-37. PubMed ID: 29175679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
    Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W
    IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative image analysis of microbial communities with BiofilmQ.
    Hartmann R; Jeckel H; Jelli E; Singh PK; Vaidya S; Bayer M; Rode DKH; Vidakovic L; Díaz-Pascual F; Fong JCN; Dragoš A; Lamprecht O; Thöming JG; Netter N; Häussler S; Nadell CD; Sourjik V; Kovács ÁT; Yildiz FH; Drescher K
    Nat Microbiol; 2021 Feb; 6(2):151-156. PubMed ID: 33398098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SC-Track: a robust cell-tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations.
    Li C; Xie SS; Wang J; Sharvia S; Chan KY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38704671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective automated pipeline for 3D reconstruction of synapses based on deep learning.
    Xiao C; Li W; Deng H; Chen X; Yang Y; Xie Q; Han H
    BMC Bioinformatics; 2018 Jul; 19(1):263. PubMed ID: 30005590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy.
    Park H; Na M; Kim B; Park S; Kim KH; Chang S; Ye JC
    Nat Commun; 2022 Jun; 13(1):3297. PubMed ID: 35676288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and simple tool for the quantification of biofilm-embedded cells sub-populations from fluorescent microscopic images.
    Bogachev MI; Volkov VY; Markelov OA; Trizna EY; Baydamshina DR; Melnikov V; Murtazina RR; Zelenikhin PV; Sharafutdinov IS; Kayumov AR
    PLoS One; 2018; 13(5):e0193267. PubMed ID: 29715298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional Imaging of Bacterial Cells for Accurate Cellular Representations and Precise Protein Localization.
    Bratton BP; Barton B; Morgenstein RM
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31736495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.