BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 33262376)

  • 1. Cohesin depleted cells rebuild functional nuclear compartments after endomitosis.
    Cremer M; Brandstetter K; Maiser A; Rao SSP; Schmid VJ; Guirao-Ortiz M; Mitra N; Mamberti S; Klein KN; Gilbert DM; Leonhardt H; Cardoso MC; Aiden EL; Harz H; Cremer T
    Nat Commun; 2020 Dec; 11(1):6146. PubMed ID: 33262376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A streamlined cohesin apparatus is sufficient for mitosis and meiosis in the protist Tetrahymena.
    Ali EI; Loidl J; Howard-Till RA
    Chromosoma; 2018 Dec; 127(4):421-435. PubMed ID: 29948142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesin Loss Eliminates All Loop Domains.
    Rao SSP; Huang SC; Glenn St Hilaire B; Engreitz JM; Perez EM; Kieffer-Kwon KR; Sanborn AL; Johnstone SE; Bascom GD; Bochkov ID; Huang X; Shamim MS; Shin J; Turner D; Ye Z; Omer AD; Robinson JT; Schlick T; Bernstein BE; Casellas R; Lander ES; Aiden EL
    Cell; 2017 Oct; 171(2):305-320.e24. PubMed ID: 28985562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization.
    Kant A; Guo Z; Vinayak V; Neguembor MV; Li WS; Agrawal V; Pujadas E; Almassalha L; Backman V; Lakadamyali M; Cosma MP; Shenoy VB
    Nat Commun; 2024 May; 15(1):4338. PubMed ID: 38773126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attraction and disruption: how loop extrusion and compartmentalisation shape the nuclear genome.
    Magnitov M; de Wit E
    Curr Opin Genet Dev; 2024 Jun; 86():102194. PubMed ID: 38636335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two independent modes of chromatin organization revealed by cohesin removal.
    Schwarzer W; Abdennur N; Goloborodko A; Pekowska A; Fudenberg G; Loe-Mie Y; Fonseca NA; Huber W; Haering CH; Mirny L; Spitz F
    Nature; 2017 Nov; 551(7678):51-56. PubMed ID: 29094699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression.
    Kim JS; He X; Liu J; Duan Z; Kim T; Gerard J; Kim B; Pillai MM; Lane WS; Noble WS; Budnik B; Waldman T
    J Biol Chem; 2019 May; 294(22):8760-8772. PubMed ID: 31010829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.
    Zuin J; Dixon JR; van der Reijden MI; Ye Z; Kolovos P; Brouwer RW; van de Corput MP; van de Werken HJ; Knoch TA; van IJcken WF; Grosveld FG; Ren B; Wendt KS
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):996-1001. PubMed ID: 24335803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
    Gassler J; Brandão HB; Imakaev M; Flyamer IM; Ladstätter S; Bickmore WA; Peters JM; Mirny LA; Tachibana K
    EMBO J; 2017 Dec; 36(24):3600-3618. PubMed ID: 29217590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription-mediated supercoiling regulates genome folding and loop formation.
    Neguembor MV; Martin L; Castells-García Á; Gómez-García PA; Vicario C; Carnevali D; AlHaj Abed J; Granados A; Sebastian-Perez R; Sottile F; Solon J; Wu CT; Lakadamyali M; Cosma MP
    Mol Cell; 2021 Aug; 81(15):3065-3081.e12. PubMed ID: 34297911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. USP13 interacts with cohesin and regulates its ubiquitination in human cells.
    He X; Kim JS; Diaz-Martinez LA; Han C; Lane WS; Budnik B; Waldman T
    J Biol Chem; 2021; 296():100194. PubMed ID: 33334891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Energetics and Physiological Impact of Cohesin Extrusion.
    Vian L; Pękowska A; Rao SSP; Kieffer-Kwon KR; Jung S; Baranello L; Huang SC; El Khattabi L; Dose M; Pruett N; Sanborn AL; Canela A; Maman Y; Oksanen A; Resch W; Li X; Lee B; Kovalchuk AL; Tang Z; Nelson S; Di Pierro M; Cheng RR; Machol I; St Hilaire BG; Durand NC; Shamim MS; Stamenova EK; Onuchic JN; Ruan Y; Nussenzweig A; Levens D; Aiden EL; Casellas R
    Cell; 2018 May; 173(5):1165-1178.e20. PubMed ID: 29706548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cohesin Biology: From Passive Rings to Molecular Motors.
    Mayerova N; Cipak L; Gregan J
    Trends Genet; 2020 Jun; 36(6):387-389. PubMed ID: 32396831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin organization in myelodysplastic syndrome.
    Xu JJ; Viny AD
    Exp Hematol; 2024 Jun; 134():104216. PubMed ID: 38582293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos.
    Popken J; Brero A; Koehler D; Schmid VJ; Strauss A; Wuensch A; Guengoer T; Graf A; Krebs S; Blum H; Zakhartchenko V; Wolf E; Cremer T
    Nucleus; 2014; 5(6):555-89. PubMed ID: 25482066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cohesin residency determines chromatin loop patterns.
    Costantino L; Hsieh TS; Lamothe R; Darzacq X; Koshland D
    Elife; 2020 Nov; 9():. PubMed ID: 33170773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ASURA (PHB2) interacts with Scc1 through chromatin.
    Equilibrina I; Matsunaga S; Morimoto A; Hashimoto T; Uchiyama S; Fukui K
    Cytogenet Genome Res; 2013; 139(4):225-33. PubMed ID: 23548868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
    Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A
    Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.