BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 33262763)

  • 21. Inducing vascular normalization: A promising strategy for immunotherapy.
    Luo X; Zou W; Wei Z; Yu S; Zhao Y; Wu Y; Wang A; Lu Y
    Int Immunopharmacol; 2022 Nov; 112():109167. PubMed ID: 36037653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.
    Fukumura D; Kloepper J; Amoozgar Z; Duda DG; Jain RK
    Nat Rev Clin Oncol; 2018 May; 15(5):325-340. PubMed ID: 29508855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.
    Wang H; Franco F; Ho PC
    Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting cancer-related inflammation in the era of immunotherapy.
    Nakamura K; Smyth MJ
    Immunol Cell Biol; 2017 Apr; 95(4):325-332. PubMed ID: 27999432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of nanotechnology in circumventing immunotolerance.
    Ma Y; Shen Y; Zhu B; Li D; Liu J
    Pharmazie; 2020 Oct; 75(10):470-477. PubMed ID: 33305719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypoxia-Driven Immune Escape in the Tumor Microenvironment.
    Vito A; El-Sayes N; Mossman K
    Cells; 2020 Apr; 9(4):. PubMed ID: 32316260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge.
    Makkouk A; Weiner GJ
    Cancer Res; 2015 Jan; 75(1):5-10. PubMed ID: 25524899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming tumor-mediated immunosuppression.
    Schlößer HA; Theurich S; Shimabukuro-Vornhagen A; Holtick U; Stippel DL; von Bergwelt-Baildon M
    Immunotherapy; 2014; 6(9):973-88. PubMed ID: 25341119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer.
    Hatfield SM; Sitkovsky M
    Curr Opin Pharmacol; 2016 Aug; 29():90-6. PubMed ID: 27429212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining microenvironment normalization strategies to improve cancer immunotherapy.
    Mpekris F; Voutouri C; Baish JW; Duda DG; Munn LL; Stylianopoulos T; Jain RK
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3728-3737. PubMed ID: 32015113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold to Hot: Tumor Immunotherapy by Promoting Vascular Normalization Based on PDGFB Nanocomposites.
    Ma S; Tian Z; Liu L; Zhu J; Wang J; Zhao S; Zhu Y; Zhu J; Wang W; Jiang R; Qu Y; Lei J; Zhao J; Jiang T
    Small; 2024 Apr; 20(16):e2308638. PubMed ID: 38018295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors.
    Akbari P; Katsarou A; Daghighian R; van Mil LWHG; Huijbers EJM; Griffioen AW; van Beijnum JR
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188701. PubMed ID: 35202772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reprogramming endothelial cells to empower cancer immunotherapy.
    Cleveland AH; Fan Y
    Trends Mol Med; 2024 Feb; 30(2):126-135. PubMed ID: 38040601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment.
    Tsukamoto H; Fujieda K; Miyashita A; Fukushima S; Ikeda T; Kubo Y; Senju S; Ihn H; Nishimura Y; Oshiumi H
    Cancer Res; 2018 Sep; 78(17):5011-5022. PubMed ID: 29967259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NK Cell Metabolism and Tumor Microenvironment.
    Terrén I; Orrantia A; Vitallé J; Zenarruzabeitia O; Borrego F
    Front Immunol; 2019; 10():2278. PubMed ID: 31616440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy.
    Bule P; Aguiar SI; Aires-Da-Silva F; Dias JNR
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cancer immunotherapy: the art of targeting the tumor immune microenvironment.
    da Silva JL; Dos Santos ALS; Nunes NCC; de Moraes Lino da Silva F; Ferreira CGM; de Melo AC
    Cancer Chemother Pharmacol; 2019 Aug; 84(2):227-240. PubMed ID: 31240384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.
    Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X
    Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.