These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 33262763)

  • 41. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer.
    Yu P; Wang Y; Yuan D; Sun Y; Qin S; Li T
    Front Immunol; 2023; 14():1276694. PubMed ID: 37936692
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy.
    Nicholas NS; Apollonio B; Ramsay AG
    Biochim Biophys Acta; 2016 Mar; 1863(3):471-482. PubMed ID: 26554850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.
    Huo S; Liu L; Li Q; Wang J
    Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tertiary lymphoid tissue in the tumor microenvironment: from its occurrence to immunotherapeutic implications.
    Di Caro G; Castino GF; Bergomas F; Cortese N; Chiriva-Internati M; Grizzi F; Mantovani A; Marchesi F
    Int Rev Immunol; 2015 Mar; 34(2):123-33. PubMed ID: 25901857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges.
    Martin JD; Cabral H; Stylianopoulos T; Jain RK
    Nat Rev Clin Oncol; 2020 Apr; 17(4):251-266. PubMed ID: 32034288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving radioresponse through modification of the tumor immunological microenvironment.
    Chi KH; Wang YS; Kao SJ
    Cancer Biother Radiopharm; 2012 Feb; 27(1):6-11. PubMed ID: 22239431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting tumor vasculature to improve antitumor activity of T cells armed ex vivo with T cell engaging bispecific antibody.
    Park JA; Espinosa-Cotton M; Guo HF; Monette S; Cheung NV
    J Immunother Cancer; 2023 Mar; 11(3):. PubMed ID: 36990507
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point?
    Thomas JA; Gireesh Moly AG; Xavier H; Suboj P; Ladha A; Gupta G; Singh SK; Palit P; Babykutty S
    Front Oncol; 2023; 13():1063051. PubMed ID: 37056346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. WNT/β-Catenin Signaling Pathway Regulating T Cell-Inflammation in the Tumor Microenvironment.
    Li X; Xiang Y; Li F; Yin C; Li B; Ke X
    Front Immunol; 2019; 10():2293. PubMed ID: 31616443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of tumor microenvironment in the regulation of PD-L1: A novel role in resistance to cancer immunotherapy.
    Kalantari Khandani N; Ghahremanloo A; Hashemy SI
    J Cell Physiol; 2020 Oct; 235(10):6496-6506. PubMed ID: 32239707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunomodulation of Tumor Vessels: It Takes Two to Tango.
    Johansson-Percival A; He B; Ganss R
    Trends Immunol; 2018 Oct; 39(10):801-814. PubMed ID: 30153971
    [TBL] [Abstract][Full Text] [Related]  

  • 54. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer.
    Lee SJ; Yang H; Kim WR; Lee YS; Lee WS; Kong SJ; Lee HJ; Kim JH; Cheon J; Kang B; Chon HJ; Kim C
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34145029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy.
    Najem H; Khasraw M; Heimberger AB
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prostate cancer immunotherapy: where are we and where are we going?
    De Velasco MA; Uemura H
    Curr Opin Urol; 2018 Jan; 28(1):15-24. PubMed ID: 29095729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. EnanDIM - a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy.
    Kapp K; Volz B; Curran MA; Oswald D; Wittig B; Schmidt M
    J Immunother Cancer; 2019 Jan; 7(1):5. PubMed ID: 30621769
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy.
    Qian C; Yang C; Tang Y; Zheng W; Zhou Y; Zhang S; Song M; Cheng P; Wei Z; Zhong C; Wan L; Wang A; Zhao Y; Lu Y
    Pharmacol Res; 2022 Aug; 182():106333. PubMed ID: 35779815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies?
    Hosseinkhani N; Derakhshani A; Kooshkaki O; Abdoli Shadbad M; Hajiasgharzadeh K; Baghbanzadeh A; Safarpour H; Mokhtarzadeh A; Brunetti O; Yue SC; Silvestris N; Baradaran B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting regulatory T cells in anti-PD-1/PD-L1 cancer immunotherapy.
    Zhulai G; Oleinik E
    Scand J Immunol; 2022 Mar; 95(3):e13129. PubMed ID: 34936125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.