These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33263174)

  • 21. Probability assessment of vegetation vulnerability to drought based on remote sensing data.
    Alamdarloo EH; Manesh MB; Khosravi H
    Environ Monit Assess; 2018 Nov; 190(12):702. PubMed ID: 30406494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ
    Jamba; 2019; 11(1):712. PubMed ID: 31745406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring droughts in Eswatini: A spatiotemporal variability analysis using the Standard Precipitation Index.
    Mlenga DH; Jordaan AJ; Mandebvu B
    Jamba; 2019; 11(1):725. PubMed ID: 31616546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the role of SWIR band in detecting agricultural crop stress: a case study of Raichur district, Karnataka, India.
    Swathandran S; Aslam MAM
    Environ Monit Assess; 2019 Jun; 191(7):442. PubMed ID: 31203445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative evaluation of drought indices for monitoring drought based on remote sensing data.
    Wei W; Zhang J; Zhou L; Xie B; Zhou J; Li C
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20408-20425. PubMed ID: 33405156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy.
    Liu L; Yang X; Zhou H; Liu S; Zhou L; Li X; Yang J; Han X; Wu J
    Sci Total Environ; 2018 Jun; 625():1208-1217. PubMed ID: 29996417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought conditions appraisal using geoinformatics and multi-influencing factors.
    Dyosi M; Kalumba AM; Magagula HB; Zhou L; Orimoloye IR
    Environ Monit Assess; 2021 May; 193(6):365. PubMed ID: 34046747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the utility of various drought indices to monitor meteorological drought in Tropical Dry Forests.
    Zou L; Cao S; Sanchez-Azofeifa A
    Int J Biometeorol; 2020 Apr; 64(4):701-711. PubMed ID: 31925517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [An improved method and its application for agricultural drought monitoring based on remote sensing].
    Zheng YF; Cheng JX; Wu RJ; Guan FL; Yao SR
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2608-18. PubMed ID: 24417121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data.
    Yu J; Lim J; Lee KS
    Environ Monit Assess; 2018 Feb; 190(3):126. PubMed ID: 29423574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studying of drought phenomena and vegetation trends over South Asia from 1990 to 2015 by using AVHRR and NASA's MERRA data.
    Ali S; Xu ZT; Henchirli M; Wilson K; Zhang J
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):4756-4768. PubMed ID: 31845256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.
    Ebhuoma O; Gebreslasie M
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27314369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the effect of spatial-temporal droughts on dominant crop yield changes in Central Malawi.
    Chikabvumbwa SR; Salehnia N; Manzanas R; Abdelbaki C; Zerga A
    Environ Monit Assess; 2022 Jan; 194(2):63. PubMed ID: 34993655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring and mapping of drought in a semi-arid region: case of the Merguellil watershed, central Tunisia.
    Ben Othman D; Abida H
    Environ Monit Assess; 2022 Mar; 194(4):287. PubMed ID: 35305173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Evaluating the utility of MODIS vegetation index for monitoring agricultural drought].
    Li HP; Zhang SQ; Gao ZQ; Sun Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):756-61. PubMed ID: 23705448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Monitoring of farmland drought based on LST-LAI spectral feature space].
    Sui XX; Qin QM; Dong H; Wang JL; Meng QY; Liu MC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):201-5. PubMed ID: 23586256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation analysis of different optical remote sensing indices for drought monitoring: a case study of Canton Sarajevo, Bosnia and Herzegovina.
    Đidelija M; Kulo N; Mulahusić A; Tuno N; Topoljak J
    Environ Monit Assess; 2023 Oct; 195(11):1338. PubMed ID: 37856003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Brazilian drought monitoring in a multi-annual perspective.
    de Brito YMA; Rufino IAA; Braga CFC; Mulligan K
    Environ Monit Assess; 2021 Jan; 193(1):31. PubMed ID: 33399946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of drought with a real-time web-based application for drought management in humid tropical Kerala, India.
    Gopinath G; Surendran U; Abhilash S; NagaKumar KCV; Anusha CK
    Environ Monit Assess; 2020 Oct; 192(11):728. PubMed ID: 33099716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Droughts in India from 1981 to 2013 and Implications to Wheat Production.
    Zhang X; Obringer R; Wei C; Chen N; Niyogi D
    Sci Rep; 2017 Mar; 7():44552. PubMed ID: 28294189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.