BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33263388)

  • 1. Node-Accessible Zirconium MOFs.
    Lu Z; Liu J; Zhang X; Liao Y; Wang R; Zhang K; Lyu J; Farha OK; Hupp JT
    J Am Chem Soc; 2020 Dec; 142(50):21110-21121. PubMed ID: 33263388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks.
    Yang D; Gates BC
    Acc Chem Res; 2021 Apr; 54(8):1982-1991. PubMed ID: 33843190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected "Spontaneous" Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles.
    Yang Y; Zhang X; Kanchanakungwankul S; Lu Z; Noh H; Syed ZH; Farha OK; Truhlar DG; Hupp JT
    J Am Chem Soc; 2020 Dec; 142(50):21169-21177. PubMed ID: 33269913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States.
    Liu J; Redfern LR; Liao Y; Islamoglu T; Atilgan A; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47822-47829. PubMed ID: 31790199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H
    Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ
    Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia Capture within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake.
    Liu J; Lu Z; Chen Z; Rimoldi M; Howarth AJ; Chen H; Alayoglu S; Snurr RQ; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2021 May; 13(17):20081-20093. PubMed ID: 33886253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inorganic "Conductive Glass" Approach to Rendering Mesoporous Metal-Organic Frameworks Electronically Conductive and Chemically Responsive.
    Kung CW; Platero-Prats AE; Drout RJ; Kang J; Wang TC; Audu CO; Hersam MC; Chapman KW; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30532-30540. PubMed ID: 30113802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism.
    Chen P; He X; Pang M; Dong X; Zhao S; Zhang W
    ACS Appl Mater Interfaces; 2020 May; 12(18):20429-20439. PubMed ID: 32255599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal-Organic Frameworks.
    Mian MR; Wang X; Wang X; Kirlikovali KO; Xie H; Ma K; Fahy KM; Chen H; Islamoglu T; Snurr RQ; Farha OK
    J Am Chem Soc; 2023 Apr; 145(13):7435-7445. PubMed ID: 36919617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks.
    Yuan S; Chen YP; Qin J; Lu W; Wang X; Zhang Q; Bosch M; Liu TF; Lian X; Zhou HC
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14696-700. PubMed ID: 26494126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Catalytic Sites on Zr
    Yang D; Gaggioli CA; Ray D; Babucci M; Gagliardi L; Gates BC
    J Am Chem Soc; 2020 Apr; 142(17):8044-8056. PubMed ID: 32249577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Catalytic Performance of MOF-808(Zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach.
    Ye G; Wan L; Zhang Q; Liu H; Zhou J; Wu L; Zeng X; Wang H; Chen X; Wang J
    Inorg Chem; 2023 Mar; 62(10):4248-4259. PubMed ID: 36857420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs.
    Wang S; Wang J; Cheng W; Yang X; Zhang Z; Xu Y; Liu H; Wu Y; Fang M
    Dalton Trans; 2015 May; 44(17):8049-61. PubMed ID: 25833761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks.
    Yuan S; Lu W; Chen YP; Zhang Q; Liu TF; Feng D; Wang X; Qin J; Zhou HC
    J Am Chem Soc; 2015 Mar; 137(9):3177-80. PubMed ID: 25714137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly augmented, (12,3)-connected Zr-MOF containing hydrated coordination sites for the catalytic transformation of gaseous CO
    Jin G; Sensharma D; Zhu N; Vaesen S; Schmitt W
    Dalton Trans; 2019 Nov; 48(41):15487-15492. PubMed ID: 31290877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs.
    Ghasempour H; Morsali A
    Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p
    Zhang W; Bu A; Ji Q; Min L; Zhao S; Wang Y; Chen J
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33931-33940. PubMed ID: 31409065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into Catalytic Gas-Phase Hydrolysis of Organophosphate Chemical Warfare Agents by MOF-Supported Bimetallic Metal-Oxo Clusters.
    Chen H; Snurr RQ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14631-14640. PubMed ID: 31909586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.