BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 33263392)

  • 1. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers.
    Zeraatkar M; de Tullio MD; Percoco G
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques.
    Kim SY; Shin YS; Jung HD; Hwang CJ; Baik HS; Cha JY
    Am J Orthod Dentofacial Orthop; 2018 Jan; 153(1):144-153. PubMed ID: 29287640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing.
    Bao Y
    Macromol Rapid Commun; 2022 Jul; 43(14):e2200202. PubMed ID: 35579565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of additively manufactured and steam sterilized surgical guides by means of continuous liquid interface production, stereolithography, digital light processing, and fused filament fabrication.
    Burkhardt F; Handermann L; Rothlauf S; Gintaute A; Vach K; Spies BC; Lüchtenborg J
    J Mech Behav Biomed Mater; 2024 Apr; 152():106418. PubMed ID: 38295512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
    Männel MJ; Baysak E; Thiele J
    Molecules; 2021 May; 26(9):. PubMed ID: 34068649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in digital light processing 3D-printing techniques for microfluidic analytical devices.
    Amini A; Guijt RM; Themelis T; De Vos J; Eeltink S
    J Chromatogr A; 2023 Mar; 1692():463842. PubMed ID: 36745962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology.
    Msallem B; Sharma N; Cao S; Halbeisen FS; Zeilhofer HF; Thieringer FM
    J Clin Med; 2020 Mar; 9(3):. PubMed ID: 32192099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization.
    Luo Z; Zhang H; Chen R; Li H; Cheng F; Zhang L; Liu J; Kong T; Zhang Y; Wang H
    Microsyst Nanoeng; 2023; 9():103. PubMed ID: 37593440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing.
    Pagac M; Hajnys J; Ma QP; Jancar L; Jansa J; Stefek P; Mesicek J
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugation-Assisted Three-Dimensional Printing of Devices Embedded with Fully Enclosed Microchannels.
    Chu CH; Burentugs E; Lee D; Owens JM; Liu R; Frazier AB; Sarioglu AF
    3D Print Addit Manuf; 2023 Aug; 10(4):609-618. PubMed ID: 37609578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics-enabled functional 3D printing.
    Mea H; Wan J
    Biomicrofluidics; 2022 Mar; 16(2):021501. PubMed ID: 35282033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing 3D-Printed Microfluidics: Characterization of a Gas-Permeable, High-Resolution PDMS Resin for Stereolithography.
    Fleck E; Sunshine A; DeNatale E; Keck C; McCann A; Potkay J
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.