BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 33263401)

  • 1. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory.
    Stylianakis I; Zervos N; Lii JH; Pantazis DA; Kolocouris A
    J Comput Aided Mol Des; 2023 Dec; 37(12):607-656. PubMed ID: 37597063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
    Shivakumar D; Williams J; Wu Y; Damm W; Shelley J; Sherman W
    J Chem Theory Comput; 2010 May; 6(5):1509-19. PubMed ID: 26615687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarizable Force Field with a σ-Hole for Liquid and Aqueous Bromomethane.
    Adluri AN; Murphy JN; Tozer T; Rowley CN
    J Phys Chem B; 2015 Oct; 119(42):13422-32. PubMed ID: 26419599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Benchmarking of Open Force Field 2.0.0: The Sage Small Molecule Force Field.
    Boothroyd S; Behara PK; Madin OC; Hahn DF; Jang H; Gapsys V; Wagner JR; Horton JT; Dotson DL; Thompson MW; Maat J; Gokey T; Wang LP; Cole DJ; Gilson MK; Chodera JD; Bayly CI; Shirts MR; Mobley DL
    J Chem Theory Comput; 2023 Jun; 19(11):3251-3275. PubMed ID: 37167319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating protein-ligand binding with neural network potentials.
    Lahey SJ; Rowley CN
    Chem Sci; 2020 Jan; 11(9):2362-2368. PubMed ID: 34084397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional Energy Barriers of Biaryls Could Be Predicted by Electron Richness/Deficiency of Aromatic Rings; Advancement of Molecular Mechanics toward Atom-Type Independence.
    Wei W; Champion C; Liu Z; Barigye SJ; Labute P; Moitessier N
    J Chem Inf Model; 2019 Nov; 59(11):4764-4777. PubMed ID: 31430147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Force Fields and Neural Networks for an Accurate Representation of Bonded Interactions.
    Kamath G; Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Chen Y; Kornberg RD; Levitt M; Fain B
    J Phys Chem A; 2024 Feb; 128(4):807-812. PubMed ID: 38232765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the ABEEMσπ Polarization Force Field for Base Pairs with Amino Acid Residue Complexes.
    Liu C; Li Y; Han BY; Gong LD; Lu LN; Yang ZZ; Zhao DX
    J Chem Theory Comput; 2017 May; 13(5):2098-2111. PubMed ID: 28402659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding Thermodynamics and Interaction Patterns of Inhibitor-Major Urinary Protein-I Binding from Extensive Free-Energy Calculations: Benchmarking AMBER Force Fields.
    Huai Z; Shen Z; Sun Z
    J Chem Inf Model; 2021 Jan; 61(1):284-297. PubMed ID: 33307679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of binding mechanism of triclosan towards cancer markers using molecular docking and molecular dynamics.
    Bhardwaj P; Biswas GP; Mahata N; Ghanta S; Bhunia B
    Chemosphere; 2022 Apr; 293():133550. PubMed ID: 34999105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torsion angle preference and energetics of small-molecule ligands bound to proteins.
    Hao MH; Haq O; Muegge I
    J Chem Inf Model; 2007; 47(6):2242-52. PubMed ID: 17880058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the Generalized Born solvation model.
    de Bakker PI; DePristo MA; Burke DF; Blundell TL
    Proteins; 2003 Apr; 51(1):21-40. PubMed ID: 12596261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast and high-quality charge model for the next generation general AMBER force field.
    He X; Man VH; Yang W; Lee TS; Wang J
    J Chem Phys; 2020 Sep; 153(11):114502. PubMed ID: 32962378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the Limits of the Generalized CHARMM and AMBER Force Fields through Predictions of Hydration Free Energy of Small Molecules.
    Chakravorty A; Hussain A; Cervantes LF; Lai TT; Brooks CL
    J Chem Inf Model; 2024 May; 64(10):4089-4101. PubMed ID: 38717640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.