BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 33263401)

  • 21. Accurate Diels-Alder Energies and
    Velez C; Doherty B; Acevedo O
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32054023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests.
    Kaminski GA; Stern HA; Berne BJ; Friesner RA; Cao YX; Murphy RB; Zhou R; Halgren TA
    J Comput Chem; 2002 Dec; 23(16):1515-31. PubMed ID: 12395421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
    Song LF; Bansal N; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1013-1026. PubMed ID: 30143917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive Assessment of Torsional Strain in Crystal Structures of Small Molecules and Protein-Ligand Complexes using ab Initio Calculations.
    Rai BK; Sresht V; Yang Q; Unwalla R; Tu M; Mathiowetz AM; Bakken GA
    J Chem Inf Model; 2019 Oct; 59(10):4195-4208. PubMed ID: 31573196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation and binding free energy studies of novel leads belonging to the benzofuran class inhibitors of Mycobacterium tuberculosis Polyketide Synthase 13.
    Cruz JN; Costa JFS; Khayat AS; Kuca K; Barros CAL; Neto AMJC
    J Biomol Struct Dyn; 2019 Apr; 37(6):1616-1627. PubMed ID: 29633908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate PDZ/Peptide Binding Specificity with Additive and Polarizable Free Energy Simulations.
    Panel N; Villa F; Fuentes EJ; Simonson T
    Biophys J; 2018 Mar; 114(5):1091-1102. PubMed ID: 29539396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance.
    Spiwok V; Lipovová P; Skálová T; Vondrácková E; Dohnálek J; Hasek J; Králová B
    J Comput Aided Mol Des; 2005 Dec; 19(12):887-901. PubMed ID: 16607570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of polyphosphate parameters for use with the AMBER force field.
    Meagher KL; Redman LT; Carlson HA
    J Comput Chem; 2003 Jul; 24(9):1016-25. PubMed ID: 12759902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Torsional barriers of substituted biphenyls calculated using density functional theory: a benchmarking study.
    Masson E
    Org Biomol Chem; 2013 May; 11(17):2859-71. PubMed ID: 23493969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multi-level quantum mechanics and molecular mechanics study of SN2 reaction at nitrogen: NH2Cl + OH(-) in aqueous solution.
    Lv J; Zhang J; Wang D
    Phys Chem Chem Phys; 2016 Feb; 18(8):6146-52. PubMed ID: 26847380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative Assessment of Force Fields on Both Low-Energy Conformational Basins and Transition-State Regions of the (ϕ-ψ) Space.
    Liu Z; Ensing B; Moore PB
    J Chem Theory Comput; 2011 Feb; 7(2):402-19. PubMed ID: 26596162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using AMBER18 for Relative Free Energy Calculations.
    Song LF; Lee TS; Zhu C; York DM; Merz KM
    J Chem Inf Model; 2019 Jul; 59(7):3128-3135. PubMed ID: 31244091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.
    Kanchi S; Gosika M; Ayappa KG; Maiti PK
    J Chem Theory Comput; 2018 Jul; 14(7):3825-3839. PubMed ID: 29812928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field.
    Shivakumar D; Harder E; Damm W; Friesner RA; Sherman W
    J Chem Theory Comput; 2012 Aug; 8(8):2553-8. PubMed ID: 26592101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning.
    Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE
    Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reweighting from Molecular Mechanics Force Fields to the ANI-2x Neural Network Potential.
    Tkaczyk S; Karwounopoulos J; Schöller A; Woodcock HL; Langer T; Boresch S; Wieder M
    J Chem Theory Comput; 2024 Apr; 20(7):2719-2728. PubMed ID: 38527958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.