BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33263571)

  • 1. The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis.
    Songsiriritthigul C; Nualkaew N; Ketudat-Cairns J; Chen CJ
    Acta Crystallogr F Struct Biol Commun; 2020 Dec; 76(Pt 12):597-603. PubMed ID: 33263571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benzophenone synthase from Garcinia mangostana L. pericarps.
    Nualkaew N; Morita H; Shimokawa Y; Kinjo K; Kushiro T; De-Eknamkul W; Ebizuka Y; Abe I
    Phytochemistry; 2012 May; 77():60-9. PubMed ID: 22390826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase.
    Klundt T; Bocola M; Lütge M; Beuerle T; Liu B; Beerhues L
    J Biol Chem; 2009 Nov; 284(45):30957-64. PubMed ID: 19710020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases.
    Liu B; Falkenstein-Paul H; Schmidt W; Beerhues L
    Plant J; 2003 Jun; 34(6):847-55. PubMed ID: 12795704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular architectures of benzoic acid-specific type III polyketide synthases.
    Stewart C; Woods K; Macias G; Allan AC; Hellens RP; Noel JP
    Acta Crystallogr D Struct Biol; 2017 Dec; 73(Pt 12):1007-1019. PubMed ID: 29199980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered
    Klamrak A; Nabnueangsap J; Nualkaew N
    Molecules; 2021 May; 26(9):. PubMed ID: 34066831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L.
    Schmidt W; Beerhues L
    FEBS Lett; 1997 Dec; 420(2-3):143-6. PubMed ID: 9459298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure-based engineering of substrate specificity.
    Diacovich L; Mitchell DL; Pham H; Gago G; Melgar MM; Khosla C; Gramajo H; Tsai SC
    Biochemistry; 2004 Nov; 43(44):14027-36. PubMed ID: 15518551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase.
    Jez JM; Ferrer JL; Bowman ME; Dixon RA; Noel JP
    Biochemistry; 2000 Feb; 39(5):890-902. PubMed ID: 10653632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical elucidation of mechanism for decarboxylative condensation of beta-keto acid by curcumin synthase.
    Katsuyama Y; Miyazono K; Tanokura M; Ohnishi Y; Horinouchi S
    J Biol Chem; 2011 Feb; 286(8):6659-68. PubMed ID: 21148316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural control of polyketide formation in plant-specific polyketide synthases.
    Jez JM; Austin MB; Ferrer J; Bowman ME; Schröder J; Noel JP
    Chem Biol; 2000 Dec; 7(12):919-30. PubMed ID: 11137815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates.
    Austin MB; Izumikawa M; Bowman ME; Udwary DW; Ferrer JL; Moore BS; Noel JP
    J Biol Chem; 2004 Oct; 279(43):45162-74. PubMed ID: 15265863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crotonyl-CoA reductase-carboxylase independent pathway for assembly of unusual alkylmalonyl-CoA polyketide synthase extender units.
    Ray L; Valentic TR; Miyazawa T; Withall DM; Song L; Milligan JC; Osada H; Takahashi S; Tsai SC; Challis GL
    Nat Commun; 2016 Dec; 7():13609. PubMed ID: 28000660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of LnmK, a Bifunctional Acyltransferase/Decarboxylase, with Substrate Analogues Reveal the Basis for Selectivity and Stereospecificity.
    Stunkard LM; Kick BJ; Lohman JR
    Biochemistry; 2021 Feb; 60(5):365-372. PubMed ID: 33482062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered biosynthesis of plant polyketides: structure-based and precursor-directed approach.
    Abe I
    Top Curr Chem; 2010; 297():45-66. PubMed ID: 21495256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme a-dependent transferases and synthases.
    Walker AM; Hayes RP; Youn B; Vermerris W; Sattler SE; Kang C
    Plant Physiol; 2013 Jun; 162(2):640-51. PubMed ID: 23624856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the formation of acylalkylpyrones from two β-ketoacyl units by the fungal type III polyketide synthase CsyB.
    Mori T; Yang D; Matsui T; Hashimoto M; Morita H; Fujii I; Abe I
    J Biol Chem; 2015 Feb; 290(8):5214-5225. PubMed ID: 25564614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of a type III polyketide synthase involved in quinolone alkaloid biosynthesis from Aegle marmelos Correa.
    Resmi MS; Verma P; Gokhale RS; Soniya EV
    J Biol Chem; 2013 Mar; 288(10):7271-81. PubMed ID: 23329842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of biphenyls and benzophenones--evolution of benzoic acid-specific type III polyketide synthases in plants.
    Beerhues L; Liu B
    Phytochemistry; 2009; 70(15-16):1719-27. PubMed ID: 19699497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi.
    Ramakrishnan D; Tiwari MK; Manoharan G; Sairam T; Thangamani R; Lee JK; Marimuthu J
    Enzyme Microb Technol; 2018 Aug; 115():16-22. PubMed ID: 29859598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.