These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33263915)

  • 1. Root System Phenotying of Soil-Grown Plants via RGB and Hyperspectral Imaging.
    Bodner G; Alsalem M; Nakhforoosh A
    Methods Mol Biol; 2021; 2264():245-268. PubMed ID: 33263915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setup and Imaging Protocols.
    Bodner G; Alsalem M; Nakhforoosh A; Arnold T; Leitner D
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28809835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light Drones for Basic In-Field Phenotyping and Precision Farming Applications: RGB Tools Based on Image Analysis.
    Pallottino F; Figorilli S; Cecchini C; Costa C
    Methods Mol Biol; 2021; 2264():269-278. PubMed ID: 33263916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral imaging: a novel approach for plant root phenotyping.
    Bodner G; Nakhforoosh A; Arnold T; Leitner D
    Plant Methods; 2018; 14():84. PubMed ID: 30305838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.
    Wasson A; Bischof L; Zwart A; Watt M
    J Exp Bot; 2016 Feb; 67(4):1033-43. PubMed ID: 26826219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.
    Rellán-Álvarez R; Lobet G; Lindner H; Pradier PL; Sebastian J; Yee MC; Geng Y; Trontin C; LaRue T; Schrager-Lavelle A; Haney CH; Nieu R; Maloof J; Vogel JP; Dinneny JR
    Elife; 2015 Aug; 4():. PubMed ID: 26287479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis.
    Downie HF; Adu MO; Schmidt S; Otten W; Dupuy LX; White PJ; Valentine TA
    Plant Cell Environ; 2015 Jul; 38(7):1213-32. PubMed ID: 25211059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affordable and robust phenotyping framework to analyse root system architecture of soil-grown plants.
    Bontpart T; Concha C; Giuffrida MV; Robertson I; Admkie K; Degefu T; Girma N; Tesfaye K; Haileselassie T; Fikre A; Fetene M; Tsaftaris SA; Doerner P
    Plant J; 2020 Sep; 103(6):2330-2343. PubMed ID: 32530068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Experimental Rhizobox System for the Integrative Analysis of Root Development and Abiotic Stress Responses Under Water-Deficit Conditions.
    Durand M; Morin A; Porcheron B; Pourtau N
    Methods Mol Biol; 2023; 2642():375-386. PubMed ID: 36944889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Plant Root Traits Under Controlled and Field Conditions: Step-by-Step Procedures.
    Delory BM; Weidlich EWA; van Duijnen R; Pagès L; Temperton VM
    Methods Mol Biol; 2018; 1761():3-22. PubMed ID: 29525945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRootBox: a structural-functional modelling framework for root systems.
    Schnepf A; Leitner D; Landl M; Lobet G; Mai TH; Morandage S; Sheng C; Zörner M; Vanderborght J; Vereecken H
    Ann Bot; 2018 Apr; 121(5):1033-1053. PubMed ID: 29432520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From lab to field, new approaches to phenotyping root system architecture.
    Zhu J; Ingram PA; Benfey PN; Elich T
    Curr Opin Plant Biol; 2011 Jun; 14(3):310-7. PubMed ID: 21530367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials.
    Liang Z; Pandey P; Stoerger V; Xu Y; Qiu Y; Ge Y; Schnable JC
    Gigascience; 2018 Feb; 7(2):1-11. PubMed ID: 29186425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Phenotyping Pipeline Reveals Three Types of Lateral Roots and a Random Branching Pattern in Two Cereals.
    Passot S; Moreno-Ortega B; Moukouanga D; Balsera C; Guyomarc'h S; Lucas M; Lobet G; Laplaze L; Muller B; Guédon Y
    Plant Physiol; 2018 Jul; 177(3):896-910. PubMed ID: 29752308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlative X-ray and neutron tomography of root systems using cadmium fiducial markers.
    Clark T; Burca G; Boardman R; Blumensath T
    J Microsc; 2020 Mar; 277(3):170-178. PubMed ID: 31535375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale.
    Paulus S; Mahlein AK
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32815537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.
    van Dusschoten D; Metzner R; Kochs J; Postma JA; Pflugfelder D; Bühler J; Schurr U; Jahnke S
    Plant Physiol; 2016 Mar; 170(3):1176-88. PubMed ID: 26729797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shaping an Optimal Soil by Root-Soil Interaction.
    Jin K; White PJ; Whalley WR; Shen J; Shi L
    Trends Plant Sci; 2017 Oct; 22(10):823-829. PubMed ID: 28803694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for the rapid characterization of root growth and distribution using digital image correlation.
    Bao T; Melenka GW; Ljubotina MK; Carey JP; Cahill JF
    New Phytol; 2018 Apr; 218(2):835-846. PubMed ID: 29453936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.