These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis. Courbet C; Rivière A; Jeannottat S; Rinaldi S; Hunkeler D; Bendjoudi H; de Marsily G J Contam Hydrol; 2011 Nov; 126(3-4):315-29. PubMed ID: 22115095 [TBL] [Abstract][Full Text] [Related]
4. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater. Wiegert C; Aeppli C; Knowles T; Holmstrand H; Evershed R; Pancost RD; Macháčková J; Gustafsson Ö Environ Sci Technol; 2012 Oct; 46(20):10918-25. PubMed ID: 22989309 [TBL] [Abstract][Full Text] [Related]
5. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
6. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. Badin A; Broholm MM; Jacobsen CS; Palau J; Dennis P; Hunkeler D J Contam Hydrol; 2016 Sep; 192():1-19. PubMed ID: 27318432 [TBL] [Abstract][Full Text] [Related]
7. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. Vogel M; Nijenhuis I; Lloyd J; Boothman C; Pöritz M; Mackenzie K Sci Total Environ; 2018 Jul; 628-629():1027-1036. PubMed ID: 30045527 [TBL] [Abstract][Full Text] [Related]
8. Multi-isotope (carbon and chlorine) analysis for fingerprinting and site characterization at a fractured bedrock aquifer contaminated by chlorinated ethenes. Palau J; Marchesi M; Chambon JC; Aravena R; Canals À; Binning PJ; Bjerg PL; Otero N; Soler A Sci Total Environ; 2014 Mar; 475():61-70. PubMed ID: 24419287 [TBL] [Abstract][Full Text] [Related]
9. Impact of sorption processes on PCE concentrations in organohalide-respiring aquifer sediment samples. Leitner S; Reichenauer TG; Watzinger A Sci Total Environ; 2018 Feb; 615():1061-1069. PubMed ID: 29751409 [TBL] [Abstract][Full Text] [Related]
10. Biostimulation of indigenous communities for the successful dechlorination of tetrachloroethene (perchloroethylene)-contaminated groundwater. Patil SS; Adetutu EM; Aburto-Medina A; Menz IR; Ball AS Biotechnol Lett; 2014 Jan; 36(1):75-83. PubMed ID: 24101252 [TBL] [Abstract][Full Text] [Related]
11. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. Puigserver D; Herrero J; Carmona JM Sci Total Environ; 2023 Jun; 877():162751. PubMed ID: 36921871 [TBL] [Abstract][Full Text] [Related]
12. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: A case study. Lhotský O; Kukačka J; Slunský J; Marková K; Němeček J; Knytl V; Cajthaml T J Hazard Mater; 2021 Sep; 417():125883. PubMed ID: 33971551 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical transformation of an aged tetrachloroethylene contamination in realistic aquifer settings. Hyldegaard BH; Jakobsen R; Ottosen LM Chemosphere; 2020 Mar; 243():125340. PubMed ID: 31760284 [TBL] [Abstract][Full Text] [Related]
14. In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier. Liu S; Yang Q; Yang Y; Ding H; Qi Y Environ Sci Pollut Res Int; 2017 Dec; 24(34):26615-26622. PubMed ID: 28956245 [TBL] [Abstract][Full Text] [Related]
15. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain). Blázquez-Pallí N; Rosell M; Varias J; Bosch M; Soler A; Vicent T; Marco-Urrea E Environ Pollut; 2019 Jan; 244():165-173. PubMed ID: 30326388 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. Abe Y; Aravena R; Zopfi J; Parker B; Hunkeler D J Contam Hydrol; 2009 Jun; 107(1-2):10-21. PubMed ID: 19442407 [TBL] [Abstract][Full Text] [Related]
17. In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation. Vieth A; Müller J; Strauch G; Kästner M; Gehre M; Meckenstock RU; Richnow HH Isotopes Environ Health Stud; 2003 Jun; 39(2):113-24. PubMed ID: 12872803 [TBL] [Abstract][Full Text] [Related]
18. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies. Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491 [TBL] [Abstract][Full Text] [Related]
19. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077 [TBL] [Abstract][Full Text] [Related]
20. Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating. Amaral HI; Aeppli C; Kipfer R; Berg M Chemosphere; 2011 Oct; 85(5):774-81. PubMed ID: 21741066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]