These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33263998)
1. A Logic NAND Gate for Controlling Gene Expression in a Circadian Rhythm in Cyanobacteria. Lee M; Woo HM ACS Synth Biol; 2020 Dec; 9(12):3210-3216. PubMed ID: 33263998 [TBL] [Abstract][Full Text] [Related]
2. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria. Choi SY; Woo HM ACS Synth Biol; 2020 Sep; 9(9):2351-2361. PubMed ID: 32379967 [TBL] [Abstract][Full Text] [Related]
3. NOT Gate Genetic Circuits to Control Gene Expression in Cyanobacteria. Taton A; Ma AT; Ota M; Golden SS; Golden JW ACS Synth Biol; 2017 Dec; 6(12):2175-2182. PubMed ID: 28803467 [TBL] [Abstract][Full Text] [Related]
4. Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria. Murayama Y; Oyama T; Kondo T J Bacteriol; 2008 Mar; 190(5):1691-8. PubMed ID: 18165308 [TBL] [Abstract][Full Text] [Related]
5. A novel allele of kaiA shortens the circadian period and strengthens interaction of oscillator components in the cyanobacterium Synechococcus elongatus PCC 7942. Chen Y; Kim YI; Mackey SR; Holtman CK; Liwang A; Golden SS J Bacteriol; 2009 Jul; 191(13):4392-400. PubMed ID: 19395479 [TBL] [Abstract][Full Text] [Related]
6. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Ito H; Mutsuda M; Murayama Y; Tomita J; Hosokawa N; Terauchi K; Sugita C; Sugita M; Kondo T; Iwasaki H Proc Natl Acad Sci U S A; 2009 Aug; 106(33):14168-73. PubMed ID: 19666549 [TBL] [Abstract][Full Text] [Related]
7. Sequence determinants of circadian gene expression phase in cyanobacteria. Vijayan V; O'Shea EK J Bacteriol; 2013 Feb; 195(4):665-71. PubMed ID: 23204469 [TBL] [Abstract][Full Text] [Related]
8. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Hosokawa N; Hatakeyama TS; Kojima T; Kikuchi Y; Ito H; Iwasaki H Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15396-401. PubMed ID: 21896749 [TBL] [Abstract][Full Text] [Related]
9. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium Knoot CJ; Biswas S; Pakrasi HB ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621 [TBL] [Abstract][Full Text] [Related]
10. Machine learning reveals the transcriptional regulatory network and circadian dynamics of Yuan Y; Al Bulushi T; Sastry AV; Sancar C; Szubin R; Golden SS; Palsson BO Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2410492121. PubMed ID: 39269777 [No Abstract] [Full Text] [Related]
11. Minimal tool set for a prokaryotic circadian clock. Schmelling NM; Lehmann R; Chaudhury P; Beck C; Albers SV; Axmann IM; Wiegard A BMC Evol Biol; 2017 Jul; 17(1):169. PubMed ID: 28732467 [TBL] [Abstract][Full Text] [Related]
12. The circadian clock ensures successful DNA replication in cyanobacteria. Liao Y; Rust MJ Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972427 [TBL] [Abstract][Full Text] [Related]
13. CmpR is important for circadian phasing and cell growth. Tanaka H; Kitamura M; Nakano Y; Katayama M; Takahashi Y; Kondo T; Manabe K; Omata T; Kutsuna S Plant Cell Physiol; 2012 Sep; 53(9):1561-9. PubMed ID: 22744912 [TBL] [Abstract][Full Text] [Related]
14. Engineering a Controllable Targeted Protein Degradation System and a Derived OR-GATE-Type Inducible Gene Expression System in Zhang M; Luo Q; Sun H; Fritze J; Luan G; Lu X ACS Synth Biol; 2022 Jan; 11(1):125-134. PubMed ID: 34914362 [TBL] [Abstract][Full Text] [Related]
15. Fine-Tuning Native Promoters of Synechococcus elongatus PCC 7942 To Develop a Synthetic Toolbox for Heterologous Protein Expression. Sengupta A; Sunder AV; Sohoni SV; Wangikar PP ACS Synth Biol; 2019 May; 8(5):1219-1223. PubMed ID: 30973704 [TBL] [Abstract][Full Text] [Related]
16. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Nakahira Y; Ogawa A; Asano H; Oyama T; Tozawa Y Plant Cell Physiol; 2013 Oct; 54(10):1724-35. PubMed ID: 23969558 [TBL] [Abstract][Full Text] [Related]
17. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Yang Q; Pando BF; Dong G; Golden SS; van Oudenaarden A Science; 2010 Mar; 327(5972):1522-6. PubMed ID: 20299597 [TBL] [Abstract][Full Text] [Related]
18. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Diamond S; Jun D; Rubin BE; Golden SS Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1916-25. PubMed ID: 25825710 [TBL] [Abstract][Full Text] [Related]
19. Circadian rhythms of superhelical status of DNA in cyanobacteria. Woelfle MA; Xu Y; Qin X; Johnson CH Proc Natl Acad Sci U S A; 2007 Nov; 104(47):18819-24. PubMed ID: 18000054 [TBL] [Abstract][Full Text] [Related]
20. Active output state of the Synechococcus Kai circadian oscillator. Paddock ML; Boyd JS; Adin DM; Golden SS Proc Natl Acad Sci U S A; 2013 Oct; 110(40):E3849-57. PubMed ID: 24043774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]