These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33264356)

  • 1. The human axial length and choroidal thickness responses to continuous and alternating episodes of myopic and hyperopic blur.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    PLoS One; 2020; 15(12):e0243076. PubMed ID: 33264356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between homatropine and optical blur on choroidal thickness.
    Sander BP; Collins MJ; Read SA
    Ophthalmic Physiol Opt; 2018 May; 38(3):257-265. PubMed ID: 29691923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of brief periods of clear vision on the defocus-mediated changes in axial length and choroidal thickness of human eyes.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    Ophthalmic Physiol Opt; 2021 Jul; 41(4):932-940. PubMed ID: 33973255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.
    Moderiano D; Do M; Hobbs S; Lam V; Sarin S; Alonso-Caneiro D; Chakraborty R
    Exp Eye Res; 2019 May; 182():125-136. PubMed ID: 30926510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of-day of exposure.
    Nickla DL; Jordan K; Yang J; Totonelly K
    Exp Eye Res; 2017 Aug; 161():132-142. PubMed ID: 28596085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperopic defocus and diurnal changes in human choroid and axial length.
    Chakraborty R; Read SA; Collins MJ
    Optom Vis Sci; 2013 Nov; 90(11):1187-98. PubMed ID: 24061153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal integration of visual signals in lens compensation (a review).
    Zhu X
    Exp Eye Res; 2013 Sep; 114():69-76. PubMed ID: 23470505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of retinal image defocus on the thickness of the human choroid.
    Chiang ST; Phillips JR; Backhouse S
    Ophthalmic Physiol Opt; 2015 Jul; 35(4):405-13. PubMed ID: 26010292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Term Effect of Low-Dose Atropine and Hyperopic Defocus on Choroidal Thickness and Axial Length in Young Myopic Adults.
    Sander BP; Collins MJ; Read SA
    J Ophthalmol; 2019; 2019():4782536. PubMed ID: 31531235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal properties of the myopic response to defocus in the guinea pig.
    Leotta AJ; Bowrey HE; Zeng G; McFadden SA
    Ophthalmic Physiol Opt; 2013 May; 33(3):227-44. PubMed ID: 23662957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of short-term peripheral myopic defocus on ocular biometrics using Fresnel "press-on" lenses in humans.
    Kubota R; Joshi NR; Samandarova I; Oliva M; Selenow A; Gupta A; Ali SR
    Sci Rep; 2021 Nov; 11(1):22690. PubMed ID: 34811408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The time course of the onset and recovery of axial length changes in response to imposed defocus.
    Delshad S; Collins MJ; Read SA; Vincent SJ
    Sci Rep; 2020 May; 10(1):8322. PubMed ID: 32433541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myopic defocus in the evening is more effective at inhibiting eye growth than defocus in the morning: Effects on rhythms in axial length and choroid thickness in chicks.
    Nickla DL; Thai P; Zanzerkia Trahan R; Totonelly K
    Exp Eye Res; 2017 Jan; 154():104-115. PubMed ID: 27845062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional alterations in human choroidal thickness in response to short-term monocular hemifield myopic defocus.
    Hoseini-Yazdi H; Vincent SJ; Collins MJ; Read SA
    Ophthalmic Physiol Opt; 2019 May; 39(3):172-182. PubMed ID: 30950105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes.
    Chakraborty R; Read SA; Collins MJ
    Exp Eye Res; 2012 Oct; 103():47-54. PubMed ID: 22971342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocular compensation for alternating myopic and hyperopic defocus.
    Winawer J; Zhu X; Choi J; Wallman J
    Vision Res; 2005 Jun; 45(13):1667-77. PubMed ID: 15792842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
    Wildsoet C; Wallman J
    Vision Res; 1995 May; 35(9):1175-94. PubMed ID: 7610579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren.
    Wang D; Chun RK; Liu M; Lee RP; Sun Y; Zhang T; Lam C; Liu Q; To CH
    PLoS One; 2016; 11(8):e0161535. PubMed ID: 27537606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes.
    Norton TT; Siegwart JT; Amedo AO
    Invest Ophthalmol Vis Sci; 2006 Nov; 47(11):4687-99. PubMed ID: 17065475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.
    Nickla DL; Sharda V; Troilo D
    Optom Vis Sci; 2005 Apr; 82(4):318-27. PubMed ID: 15829859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.