BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 33264397)

  • 41. Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication.
    Buzovetsky O; Kwon Y; Pham NT; Kim C; Ira G; Sung P; Xiong Y
    Cell Rep; 2017 Nov; 21(7):1707-1714. PubMed ID: 29141206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cascades of genetic instability resulting from compromised break-induced replication.
    Vasan S; Deem A; Ramakrishnan S; Argueso JL; Malkova A
    PLoS Genet; 2014 Feb; 10(2):e1004119. PubMed ID: 24586181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting.
    Chung WH; Zhu Z; Papusha A; Malkova A; Ira G
    PLoS Genet; 2010 May; 6(5):e1000948. PubMed ID: 20485519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity.
    Peng J; He MH; Duan YM; Liu YT; Zhou JQ
    PLoS Genet; 2015 Mar; 11(3):e1005071. PubMed ID: 25822194
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies.
    Zhang JM; Genois MM; Ouyang J; Lan L; Zou L
    Mol Cell; 2021 Mar; 81(5):1027-1042.e4. PubMed ID: 33453166
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.
    Signon L; Malkova A; Naylor ML; Klein H; Haber JE
    Mol Cell Biol; 2001 Mar; 21(6):2048-56. PubMed ID: 11238940
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase.
    Liti G; Louis EJ
    Mol Cell; 2003 May; 11(5):1373-8. PubMed ID: 12769859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch.
    Yadav T; Zhang JM; Ouyang J; Leung W; Simoneau A; Zou L
    Mol Cell; 2022 Nov; 82(21):3985-4000.e4. PubMed ID: 36265486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sgs1 and exo1 redundantly inhibit break-induced replication and de novo telomere addition at broken chromosome ends.
    Lydeard JR; Lipkin-Moore Z; Jain S; Eapen VV; Haber JE
    PLoS Genet; 2010 May; 6(5):e1000973. PubMed ID: 20523895
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pathway choice in the alternative telomere lengthening in neoplasia is dictated by replication fork processing mediated by EXD2's nuclease activity.
    Broderick R; Cherdyntseva V; Nieminuszczy J; Dragona E; Kyriakaki M; Evmorfopoulou T; Gagos S; Niedzwiedz W
    Nat Commun; 2023 Apr; 14(1):2428. PubMed ID: 37105990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tel1ATM dictates the replication timing of short yeast telomeres.
    Cooley C; Davé A; Garg M; Bianchi A
    EMBO Rep; 2014 Oct; 15(10):1093-101. PubMed ID: 25122631
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae.
    Jain S; Sugawara N; Mehta A; Ryu T; Haber JE
    Genetics; 2016 Jun; 203(2):667-75. PubMed ID: 27075725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repair of DNA Breaks by Break-Induced Replication.
    Kockler ZW; Osia B; Lee R; Musmaker K; Malkova A
    Annu Rev Biochem; 2021 Jun; 90():165-191. PubMed ID: 33792375
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MTE1 Functions with MPH1 in Double-Strand Break Repair.
    Yimit A; Kim T; Anand RP; Meister S; Ou J; Haber JE; Zhang Z; Brown GW
    Genetics; 2016 May; 203(1):147-57. PubMed ID: 26920759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly.
    Lydeard JR; Lipkin-Moore Z; Sheu YJ; Stillman B; Burgers PM; Haber JE
    Genes Dev; 2010 Jun; 24(11):1133-44. PubMed ID: 20516198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical Analysis of D-Loop Extension and DNA Strand Displacement Synthesis.
    Kwon Y; Sung P
    Methods Mol Biol; 2021; 2153():87-99. PubMed ID: 32840774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Break-induced replication repair of damaged forks induces genomic duplications in human cells.
    Costantino L; Sotiriou SK; Rantala JK; Magin S; Mladenov E; Helleday T; Haber JE; Iliakis G; Kallioniemi OP; Halazonetis TD
    Science; 2014 Jan; 343(6166):88-91. PubMed ID: 24310611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Mechanism of telomere replication and its relevance to the DNA double-strand break repair].
    Matsuura A
    Tanpakushitsu Kakusan Koso; 2006 Feb; 51(2):162-8. PubMed ID: 16457208
    [No Abstract]   [Full Text] [Related]  

  • 59. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration.
    Wilson MA; Kwon Y; Xu Y; Chung WH; Chi P; Niu H; Mayle R; Chen X; Malkova A; Sung P; Ira G
    Nature; 2013 Oct; 502(7471):393-6. PubMed ID: 24025768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Template switching during break-induced replication.
    Smith CE; Llorente B; Symington LS
    Nature; 2007 May; 447(7140):102-5. PubMed ID: 17410126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.