These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33264713)
1. Multi-Regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Ghribi O; Li G; Lin W; Shen D; Rekik I Med Image Anal; 2021 Feb; 68():101853. PubMed ID: 33264713 [TBL] [Abstract][Full Text] [Related]
2. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing. Rekik I; Li G; Lin W; Shen D Med Image Anal; 2016 Feb; 28():1-12. PubMed ID: 26619188 [TBL] [Abstract][Full Text] [Related]
3. A comparative study of machine learning methods for predicting the evolution of brain connectivity from a baseline timepoint. Aktı Ş; Kamar D; Özlü ÖA; Soydemir I; Akcan M; Kul A; Rekik I J Neurosci Methods; 2022 Feb; 368():109475. PubMed ID: 34995648 [TBL] [Abstract][Full Text] [Related]
4. Supervised contrastive learning enhances graph convolutional networks for predicting neurodevelopmental deficits in very preterm infants using brain structural connectome. Li H; Wang J; Li Z; Cecil KM; Altaye M; Dillman JR; Parikh NA; He L Neuroimage; 2024 May; 291():120579. PubMed ID: 38537766 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Longitudinal Development of Infant Cortical Surface Shape Using a 4D Current-Based Learning Framework. Rekik I; Li G; Lin W; Shen D Inf Process Med Imaging; 2015; 24():576-87. PubMed ID: 26221704 [TBL] [Abstract][Full Text] [Related]
6. Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism. Mhiri I; Rekik I Med Image Anal; 2020 Feb; 60():101596. PubMed ID: 31739282 [TBL] [Abstract][Full Text] [Related]
7. Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder. Dryburgh E; McKenna S; Rekik I Brain Imaging Behav; 2020 Oct; 14(5):1769-1778. PubMed ID: 31055763 [TBL] [Abstract][Full Text] [Related]
8. Topology-guided cyclic brain connectivity generation using geometric deep learning. Sserwadda A; Rekik I J Neurosci Methods; 2021 Apr; 353():108988. PubMed ID: 33160020 [TBL] [Abstract][Full Text] [Related]
9. Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data. Adeli E; Meng Y; Li G; Lin W; Shen D Neuroimage; 2019 Jan; 185():783-792. PubMed ID: 29709627 [TBL] [Abstract][Full Text] [Related]
10. Estimation of connectional brain templates using selective multi-view network normalization. Dhifallah S; Rekik I; Med Image Anal; 2020 Jan; 59():101567. PubMed ID: 31622839 [TBL] [Abstract][Full Text] [Related]
11. Predicting PTSD severity using longitudinal magnetoencephalography with a multi-step learning framework. Zhang J; Wong SM; Richardson JD; Jetly R; Dunkley BT J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33166947 [No Abstract] [Full Text] [Related]
12. Predicting cognitive scores with graph neural networks through sample selection learning. Hanik M; Demirtaş MA; Gharsallaoui MA; Rekik I Brain Imaging Behav; 2022 Jun; 16(3):1123-1138. PubMed ID: 34757563 [TBL] [Abstract][Full Text] [Related]
13. Predicting age and clinical risk from the neonatal connectome. Taoudi-Benchekroun Y; Christiaens D; Grigorescu I; Gale-Grant O; Schuh A; Pietsch M; Chew A; Harper N; Falconer S; Poppe T; Hughes E; Hutter J; Price AN; Tournier JD; Cordero-Grande L; Counsell SJ; Rueckert D; Arichi T; Hajnal JV; Edwards AD; Deprez M; Batalle D Neuroimage; 2022 Aug; 257():119319. PubMed ID: 35589001 [TBL] [Abstract][Full Text] [Related]
14. Morphological Brain Age Prediction using Multi-View Brain Networks Derived from Cortical Morphology in Healthy and Disordered Participants. Corps J; Rekik I Sci Rep; 2019 Jul; 9(1):9676. PubMed ID: 31273275 [TBL] [Abstract][Full Text] [Related]
15. A self-training deep neural network for early prediction of cognitive deficits in very preterm infants using brain functional connectome data. Ali R; Li H; Dillman JR; Altaye M; Wang H; Parikh NA; He L Pediatr Radiol; 2022 Oct; 52(11):2227-2240. PubMed ID: 36131030 [TBL] [Abstract][Full Text] [Related]
16. A diagnostic unified classification model for classifying multi-sized and multi-modal brain graphs using graph alignment. Yalçin A; Rekik I J Neurosci Methods; 2021 Jan; 348():109014. PubMed ID: 33309587 [TBL] [Abstract][Full Text] [Related]
17. Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech. Yourganov G; Fridriksson J; Rorden C; Gleichgerrcht E; Bonilha L J Neurosci; 2016 Jun; 36(25):6668-79. PubMed ID: 27335399 [TBL] [Abstract][Full Text] [Related]
18. Predictive connectome subnetwork extraction with anatomical and connectivity priors. Brown CJ; Miller SP; Booth BG; Zwicker JG; Grunau RE; Synnes AR; Chau V; Hamarneh G Comput Med Imaging Graph; 2019 Jan; 71():67-78. PubMed ID: 30508806 [TBL] [Abstract][Full Text] [Related]
19. Brain graph super-resolution for boosting neurological disorder diagnosis using unsupervised multi-topology connectional brain template learning. Mhiri I; Khalifa AB; Mahjoub MA; Rekik I Med Image Anal; 2020 Oct; 65():101768. PubMed ID: 32679534 [TBL] [Abstract][Full Text] [Related]