These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33264757)

  • 21. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of the wake of rainbow trout (Oncorhynchus mykiss) using three-dimensional stereoscopic digital particle image velocimetry.
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Nov; 205(Pt 21):3271-9. PubMed ID: 12324537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of sensory feedback topology on the entrainment of a neural oscillator with a compliant foil for swimming systems.
    Carryon GN; Tangorra JL
    Bioinspir Biomim; 2020 Jun; 15(4):046013. PubMed ID: 32059194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
    Marras S; Porfiri M
    J R Soc Interface; 2012 Aug; 9(73):1856-68. PubMed ID: 22356819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal chordwise stiffness profiles of self-propelled flapping fins.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2016 Sep; 11(5):056016. PubMed ID: 27627992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow.
    Sharifzadeh M; Jiang Y; Lafmejani AS; Nichols K; Aukes D
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34284354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost of Transport of Undulating Fin Propulsion.
    Vercruyssen TGA; Henrion S; Müller UK; van Leeuwen JL; van der Helm FCT
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37366809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central Pattern Generator (CPG)-Based Locomotion Control and Hydrodynamic Experiments of Synergistical Interaction between Pectoral Fins and Caudal Fin for Boxfish-like Robot.
    Chen L; Cai Y; Bi S
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.
    Russo RS; Blemker SS; Fish FE; Bart-Smith H
    Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New approaches for assessing squid fin motions: coupling proper orthogonal decomposition with volumetric particle tracking velocimetry.
    Bartol IK; Krueger PS; York CA; Thompson JT
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29789404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and analysis of a novel tendon-driven continuum robotic dolphin.
    Liu J; Zhang C; Liu Z; Zhao R; An D; Wei Y; Wu Z; Yu J
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34433157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robot motor learning shows emergence of frequency-modulated, robust swimming with an invariant Strouhal number.
    Deng H; Li D; Nitroy C; Wertz A; Priya S; Cheng B
    J R Soc Interface; 2024 Mar; 21(212):20240036. PubMed ID: 38531411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.