These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33264924)

  • 1. Effects of N
    Luo Z; Wei C; Wang T; Su B; Cheng F; Liu C; Wang Y
    J Hazard Mater; 2021 Feb; 403():123843. PubMed ID: 33264924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Synergistic Suppression Effect and Mechanism of N
    Pei B; Han Y; Chen L; Hu Z; Wu Z; Lv H; Ji W
    ACS Omega; 2024 Mar; 9(12):14539-14550. PubMed ID: 38559942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Suppression of Methane Explosions by N
    Chen X; Zhao T; Cheng F; Lu K; Shi X; Yu W
    ACS Omega; 2023 Mar; 8(12):10863-10874. PubMed ID: 37008097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosion characteristics of LPG-air mixtures in closed vessels.
    Razus D; Brinzea V; Mitu M; Oancea D
    J Hazard Mater; 2009 Jun; 165(1-3):1248-52. PubMed ID: 19056172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Risk Assessment of Liquefied Petroleum Gas Explosion in a Limited Space.
    Liang H; Wang T; Luo Z; Wang X; Kang X; Deng J
    ACS Omega; 2021 Sep; 6(38):24683-24692. PubMed ID: 34604650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles.
    Zhang Q; Wang Y; Lian Z
    J Hazard Mater; 2017 Jul; 334():59-67. PubMed ID: 28402895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High methane natural gas/air explosion characteristics in confined vessel.
    Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z
    J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of liquefied petroleum gas on ozone formation in Guadalajara and Mexico City.
    Jaimes-López JL; Sandoval-Fernández J; González-Ortíz E; Vázquez-García M; González-Macías U; Zambrano-García A
    J Air Waste Manag Assoc; 2005 Jun; 55(6):841-6. PubMed ID: 16022422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition characteristics research of aluminum alloy polishing dust explosion through addition of ultrafine Al(OH)
    Lv C; Wang X; Xue S; Xia X; Wang S
    Heliyon; 2023 Sep; 9(9):e19747. PubMed ID: 37809580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of N
    Luo Z; Qi H; Li R; Wang T; Su B; Su Y; Zhang T
    ACS Omega; 2023 Dec; 8(50):48304-48316. PubMed ID: 38144081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the Explosion Characteristics of an Aluminum Dust-Diethyl Ether-Air Mixture.
    Yao N; Bai C; Wang L; Liu N
    ACS Omega; 2021 Jul; 6(29):18868-18875. PubMed ID: 34337226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental data revealing explosion characteristics of methane, air, and coal mixtures.
    Deng J; Qu J; Wang QH; Xiao Y; Cheng YC; Shu CM
    RSC Adv; 2019 Aug; 9(42):24627-24637. PubMed ID: 35527867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust.
    Yu Y; Li Y; Zhang Q; Ni W; Jiang J
    J Hazard Mater; 2018 Feb; 344():558-565. PubMed ID: 29102638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inerting of magnesium dust cloud with Ar, N2 and CO2.
    Li G; Yuan CM; Fu Y; Zhong YP; Chen BZ
    J Hazard Mater; 2009 Oct; 170(1):180-3. PubMed ID: 19487075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Five-year epidemiology of liquefied petroleum gas-related burns.
    Jin R; Wu P; Ho JK; Wang X; Han C
    Burns; 2018 Feb; 44(1):210-217. PubMed ID: 28781135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect Analysis of the Venting Direction on Explosion Pressure in LPG Pipelines.
    Bi H; Cao Y; Mao W; Wang K
    ACS Omega; 2024 Apr; 9(13):15709-15717. PubMed ID: 38585099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the behaviour of a protected vessel containing LPG during pool fire engulfment.
    Shebeko YN; Bolodian IA; Filippov VN; Navzenya VY; Kostyuhin AK; Tokarev PM; Zamishevski ED
    J Hazard Mater; 2000 Oct; 77(1-3):43-56. PubMed ID: 10946118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burn injuries related to liquefied petroleum gas-powered cars.
    Bozkurt M; Kulahci Y; Zor F; Kapi E
    J Burn Care Res; 2008; 29(6):897-901. PubMed ID: 18849851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition.
    Movileanu C; Gosa V; Razus D
    J Hazard Mater; 2012 Oct; 235-236():108-15. PubMed ID: 22858131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.