These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33264981)

  • 1. Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils.
    Gerdelidani AF; Towfighi H; Shahbazi K; Lamb DT; Choppala G; Abbasi S; Bari ASMF; Naidu R; Rahman MM
    J Hazard Mater; 2021 Feb; 403():123931. PubMed ID: 33264981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation.
    Fazle Bari ASM; Lamb D; Choppala G; Bolan N; Seshadri B; Rahman MA; Rahman MM
    J Hazard Mater; 2020 Nov; 399():123029. PubMed ID: 32937709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil particle size fractions affect arsenic (As) release and speciation: Insights into dissolved organic matter and functional genes.
    Zou Q; Wei H; Chen Z; Ye P; Zhang J; Sun M; Huang L; Li J
    J Hazard Mater; 2023 Feb; 443(Pt B):130100. PubMed ID: 36334574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and nature of arsenic along former railway corridors of South Australia.
    Smith E; Smith J; Naidu R
    Sci Total Environ; 2006 Jun; 363(1-3):175-82. PubMed ID: 16005048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessible and non-bioaccessible fractions of soil arsenic.
    Whitacre SD; Basta NT; Dayton EA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of an updated fractionation and indirect speciation procedure for inorganic arsenic in oxic and suboxic soils and sediments.
    Lock A; Wallschläger D; McMurdo C; Tyler L; Belzile N; Spiers G
    Environ Pollut; 2016 Dec; 219():1102-1108. PubMed ID: 27640761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk.
    Mensah AK; Marschner B; Shaheen SM; Wang J; Wang SL; Rinklebe J
    Environ Pollut; 2020 Jun; 261():114116. PubMed ID: 32220748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile.
    Ascar L; Ahumada I; Richter P
    Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methodological approach for the identification of arsenic bearing phases in polluted soils.
    Matera V; Le Hécho I; Laboudigue A; Thomas P; Tellier S; Astruc M
    Environ Pollut; 2003; 126(1):51-64. PubMed ID: 12860102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions.
    Wang P; Keller AA
    Water Res; 2009 Mar; 43(5):1448-56. PubMed ID: 19147172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils].
    Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL
    Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E; Naidu R; Weber J; Juhasz AL
    Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic in Soils Affected by Mining: Microscopic Studies vs. Sequential Chemical Extraction.
    Álvarez-Quintana J; Álvarez R; Ordóñez A
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33202531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of clay mineral weathering on green rust formation at iron-reducing conditions.
    Betts AR; Siebecker MG; Elzinga EJ; Luxton TP; Scheckel KG; Sparks DL
    Geochim Cosmochim Acta; 2023 Jun; 350():46-56. PubMed ID: 37469621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe(II)-catalyzed transformation of Fe (oxyhydr)oxides across organic matter fractions in organically amended soils.
    Giannetta B; Balint R; Said-Pullicino D; Plaza C; Martin M; Zaccone C
    Sci Total Environ; 2020 Dec; 748():141125. PubMed ID: 32798857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.