These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33265047)

  • 21. Insights into the role of humic acid on Pd-catalytic electro-Fenton transformation of toluene in groundwater.
    Liao P; Al-Ani Y; Malik Ismael Z; Wu X
    Sci Rep; 2015 Mar; 5():9239. PubMed ID: 25783864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Zhang Y; Lu Y; Qian A; Zhang P; Cui Y; Yuan S
    Environ Sci Technol; 2021 Oct; 55(19):13366-13375. PubMed ID: 34551244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behaviors and fate of adsorbed Cr(VI) during Fe(II)-induced transformation of ferrihydrite-humic acid co-precipitates.
    Yu G; Fu F; Ye C; Tang B
    J Hazard Mater; 2020 Jun; 392():122272. PubMed ID: 32086091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen functionalized g-C
    Xu H; Ye Q; Zhang J; Li Q; Wang M; Zhou P; Zhou G; Wang Q
    Sci Total Environ; 2021 Jul; 778():146280. PubMed ID: 34030394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants.
    Hou X; Huang X; Ai Z; Zhao J; Zhang L
    J Hazard Mater; 2016 Jun; 310():170-8. PubMed ID: 26921510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphate Removal in Relation to Structural Development of Humic Acid-Iron Coprecipitates.
    Chen KY; Hsu LC; Chan YT; Cho YL; Tsao FY; Tzou YM; Hsieh YC; Liu YT
    Sci Rep; 2018 Jul; 8(1):10363. PubMed ID: 29985471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation characteristics of humic acid during photo-Fenton processes.
    Fukushima M; Tatsumi K; Nagao S
    Environ Sci Technol; 2001 Sep; 35(18):3683-90. PubMed ID: 11783645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation.
    Zeng Q; Wang X; Liu X; Huang L; Hu J; Chu R; Tolic N; Dong H
    Environ Sci Technol; 2020 Dec; 54(23):15013-15023. PubMed ID: 32991154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of C/Fe Molar Ratio on H
    Zhang Y; Zhang N; Qian A; Yu C; Zhang P; Yuan S
    Environ Sci Technol; 2022 Sep; 56(18):13408-13418. PubMed ID: 36063534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: Mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide.
    Feng Y; Liao C; Shih K
    Chemosphere; 2016 Jul; 154():573-582. PubMed ID: 27085318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes.
    Yang Z; Yu A; Shan C; Gao G; Pan B
    Water Res; 2018 Jun; 137():37-46. PubMed ID: 29525426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.
    Shi J; Ai Z; Zhang L
    Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient removal of organic contaminants in CuS-mediated solid-liquid-interfacial fenton-like system: Role of bimetallic cycle and sulfur species.
    Wang Z; Hou K; Chen F; Zhang S; Pi Z; He L; Chen S; Li X; Yang Q
    J Hazard Mater; 2023 Jun; 451():131103. PubMed ID: 36870132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions.
    Li Y; Sun J; Sun SP
    J Hazard Mater; 2016 Aug; 313():193-200. PubMed ID: 27070388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process.
    Fan C; Horng CY; Li SJ
    Chemosphere; 2013 Sep; 93(1):178-83. PubMed ID: 23786814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strongly enhanced Fenton-like oxidation (Fe/peroxydisulfate) by BiOI under visible light irradiation: A novel and green strategy for Fe(III) reduction.
    Tong Y; Zhou P; Liu Y; Wang N; Li W; Cheng F; Yang B; Liang J; Zhang Y; Lai B
    J Hazard Mater; 2022 Apr; 428():128202. PubMed ID: 35032959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of H
    Dong C; Ji J; Shen B; Xing M; Zhang J
    Environ Sci Technol; 2018 Oct; 52(19):11297-11308. PubMed ID: 30180549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.