These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33265058)

  • 1. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems.
    Shi C; Xu Y; Liu M; Chen X; Fan M; Liu J; Chen Y
    J Hazard Mater; 2021 Feb; 403():124053. PubMed ID: 33265058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced degradation of bisphenol S by persulfate activated with sulfide-modified nanoscale zero-valent iron.
    Cai J; Zhang Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8281-8293. PubMed ID: 34482464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids.
    Zhou N; Liu Y; Cao S; Guo R; Ma Y; Chen J
    Sci Total Environ; 2020 Jun; 723():138164. PubMed ID: 32392677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of microbial community in the bioreactor for bisphenol S removal.
    Huang WC; Jia X; Li J; Li M
    Sci Total Environ; 2019 Apr; 662():15-21. PubMed ID: 30684898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system.
    Chen X; Xu Y; Fan M; Chen Y; Shen S
    J Environ Manage; 2019 Apr; 235():350-356. PubMed ID: 30703649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorination of bisphenol S: Kinetics, products, and effect of humic acid.
    Gao Y; Jiang J; Zhou Y; Pang SY; Ma J; Jiang C; Yang Y; Huang ZS; Gu J; Guo Q; Duan JB; Li J
    Water Res; 2018 Mar; 131():208-217. PubMed ID: 29289922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic co-metabolic biodegradation of tetrabromobisphenol A using a bioelectrochemical system.
    Fan M; Zhou N; Li P; Chen L; Chen Y; Shen S; Zhu S
    J Hazard Mater; 2017 Jan; 321():791-800. PubMed ID: 27745959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron.
    Xu W; Hu X; Lou Y; Jiang X; Shi K; Tong Y; Xu X; Shen C; Hu B; Lou L
    Environ Res; 2020 Aug; 187():109662. PubMed ID: 32460094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation.
    Liu Y; Guo H; Zhang Y; Cheng X; Zhou P; Wang J; Li W
    Environ Pollut; 2019 Sep; 252(Pt B):1042-1050. PubMed ID: 31252101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal.
    Giasuddin AB; Kanel SR; Choi H
    Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol A degradation: Preparation, performance, and mechanism of action.
    Bao T; Damtie MM; Hosseinzadeh A; Wei W; Jin J; Phong Vo HN; Ye JS; Liu Y; Wang XF; Yu ZM; Chen ZJ; Wu K; Frost RL; Ni BJ
    J Environ Manage; 2020 Apr; 260():110105. PubMed ID: 31941635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UVC-assisted electrochemical degradation of novel bisphenol analogues with boron-doped diamond electrodes: kinetics, pathways and eco-toxicity removal.
    Luo C; Hou R; Chen G; Liu C; Zhou L; Yuan Y
    Sci Total Environ; 2020 Apr; 711():134539. PubMed ID: 32000307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model simulation and mechanism of Fe(0/II/III) cycle activated persulfate degradation of methylparaben based on hydroxylamine enhanced nano-zero-valent iron.
    Li X; Song C; Sun B; Yang N; Gao J; Zhu J; Liu Y
    J Environ Manage; 2022 Dec; 323():116106. PubMed ID: 36126593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles.
    Yao B; Liu Y; Zou D
    Chemosphere; 2019 Jul; 226():298-306. PubMed ID: 30933739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of Bisphenol S by a Bacterial Consortium Enriched from River Sediments.
    Wang X; Chen J; Ji R; Liu Y; Su Y; Guo R
    Bull Environ Contam Toxicol; 2019 Oct; 103(4):630-635. PubMed ID: 31486911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction.
    Ma B; Yu W; Jefferson WA; Liu H; Qu J
    Water Res; 2015 Mar; 71():140-9. PubMed ID: 25613411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S.
    Zaborowska M; Wyszkowska J; Borowik A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32429402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron.
    Zhang D; Li Y; Sun A; Tong S; Jiang X; Mu Y; Li J; Han W; Sun X; Wang L; Shen J
    Chemosphere; 2020 May; 247():125832. PubMed ID: 31931312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of bisphenol S in the environment and implications for human exposure: A short review.
    Wu LH; Zhang XM; Wang F; Gao CJ; Chen D; Palumbo JR; Guo Y; Zeng EY
    Sci Total Environ; 2018 Feb; 615():87-98. PubMed ID: 28963899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of extracellular polymeric substances and carbon layer on electron utilization of Fe@C during anaerobic treatment of refractory wastewater.
    Xu H; Zhang L; Yao C; Yang B; Zhou Y
    Water Res; 2023 Mar; 231():119609. PubMed ID: 36669307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.