These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33265139)

  • 1. Performance Features of a Stationary Stochastic Novikov Engine.
    Schwalbe K; Hoffmann KH
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle.
    Chen YH; Chen JF; Fei Z; Quan HT
    Phys Rev E; 2022 Aug; 106(2-1):024105. PubMed ID: 36109948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y
    Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency.
    Gerstenmaier YC
    Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study.
    Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F
    Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapted or Adaptable: How to Manage Entropy Production?
    Goupil C; Herbert E
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an active heat engine.
    Gronchi G; Puglisi A
    Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Efficiency at Maximum Power in a Fock-Darwin Model Quantum Dot Engine.
    Peña FJ; Myers NM; Órdenes D; Albarrán-Arriagada F; Vargas P
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoreversible quantum heat engines in the linear response regime.
    Wang H; He J; Wang J
    Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-dot Carnot engine at maximum power.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041106. PubMed ID: 20481676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian heat engine with active reservoirs.
    Lee JS; Park JM; Park H
    Phys Rev E; 2020 Sep; 102(3-1):032116. PubMed ID: 33075980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics.
    Hong Y; Xiao Y; He J; Wang J
    Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.