These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33265139)

  • 21. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations.
    Cerino L; Puglisi A; Vulpiani A
    Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global Stability of the Curzon-Ahlborn Engine with a Working Substance That Satisfies the van der Waals Equation of State.
    Pacheco-Paez JC; Chimal-Eguía JC; Páez-Hernández R; Ladino-Luna D
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry.
    Zhang R; Li QW; Tang FR; Yang XQ; Bai L
    Phys Rev E; 2017 Aug; 96(2-1):022133. PubMed ID: 28950616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle.
    Wang T; Ge Y; Chen L; Feng H; Yu J
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. True nature of the Curzon-Ahlborn efficiency.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E; 2017 Aug; 96(2-1):022119. PubMed ID: 28950453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization and Stability of Heat Engines: The Role of Entropy Evolution.
    Gonzalez-Ayala J; Santillán M; Santos MJ; Calvo Hernández A; Mateos Roco JM
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified approach to stochastic thermodynamics: Application to a quantum heat engine.
    Das J; Biswas LRR; Bag BC
    Phys Rev E; 2020 Oct; 102(4-1):042138. PubMed ID: 33212624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stochastic thermodynamics, fluctuation theorems and molecular machines.
    Seifert U
    Rep Prog Phys; 2012 Dec; 75(12):126001. PubMed ID: 23168354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine.
    Oh Y; Baek Y
    Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linear irreversible thermodynamics and coefficient of performance.
    de Cisneros BJ; Arias-Hernández LA; Hernández AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):057103. PubMed ID: 16803078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermo-Economic Optimization of an Idealized Solar Tower Power Plant Combined with MED System.
    Zheng Y; Zhao Y; Liang S; Zheng H
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.