These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33265162)

  • 1. Finite-Time Thermodynamic Modeling and a Comparative Performance Analysis for Irreversible Otto, Miller and Atkinson Cycles.
    Zhao J; Xu F
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid.
    Chen L; Ge Y; Liu C; Feng H; Lorenzini G
    Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston.
    Wu Z; Chen L; Feng H
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of Miller cycle with EIVC and LIVC on a high compression ratio gasoline engine.
    Xu J; Guo T; Feng Y; Sun M
    Sci Prog; 2021; 104(2):368504211023640. PubMed ID: 34109883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance optimization of an air-standard irreversible dual-atkinson cycle engine based on the ecological coefficient of performance criterion.
    Gonca G; Sahin B
    ScientificWorldJournal; 2014; 2014():815787. PubMed ID: 25170525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-Objective Optimization of Irreversible Atkinson Cycle Based on NSGA-II.
    Shi S; Ge Y; Chen L; Feng H
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Quantum Friction and Optimal Finite-Time Performance of the Quantum Otto Cycle.
    Insinga AR
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-Objective Optimization for an Irreversible Porous Medium Cycle with Linear Variation in Working Fluid's Specific Heat.
    Zang P; Chen L; Ge Y; Shi S; Feng H
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle.
    Zhu F; Chen L; Wang W
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles.
    Frim AG; DeWeese MR
    Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power and Efficiency Optimization for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle.
    Chen L; Feng H; Ge Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine.
    Dann R; Kosloff R; Salamon P
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.