These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33265162)

  • 21. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics.
    Abah O; Paternostro M
    Phys Rev E; 2019 Feb; 99(2-1):022110. PubMed ID: 30934342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law.
    Xu H; Chen L; Ge Y; Feng H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine.
    Purkait C; Chand S; Biswas A
    Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta Type Stirling Engine. Schmidt and Finite Physical Dimensions Thermodynamics Methods Faced to Experiments.
    Dobre C; Grosu L; Costea M; Constantin M
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM; Peña FJ; Cortés N; Vargas P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performances of Transcritical Power Cycles with CO
    Liu J; Yu A; Lin X; Su W; Ou S
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing thermodynamic cycles with two finite-sized reservoirs.
    Yuan H; Ma YH; Sun CP
    Phys Rev E; 2022 Feb; 105(2):L022101. PubMed ID: 35291152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite-time thermodynamics: Engine performance improved by optimized piston motion.
    Mozurkewich M; Berry RS
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):1986-8. PubMed ID: 16592997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics.
    Hong Y; Xiao Y; He J; Wang J
    Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Diesel Cycle.
    Shi S; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34203548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle.
    Tang C; Chen L; Feng H; Ge Y
    Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33652671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantumness and thermodynamic uncertainty relation of the finite-time Otto cycle.
    Lee S; Ha M; Jeong H
    Phys Rev E; 2021 Feb; 103(2-1):022136. PubMed ID: 33736033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle.
    Wang R; Ge Y; Chen L; Feng H; Wu Z
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS; Batalhão TB; Herrera M; Souza AM; Sarthour RS; Oliveira IS; Serra RM
    Phys Rev Lett; 2019 Dec; 123(24):240601. PubMed ID: 31922824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparative Analysis of Friction and Energy Losses in Hydrogen and CNG Fueled Engines: Implications on the Top Compression Ring Design Using Steel, Cast Iron, and Silicon Nitride Materials.
    Nikolopoulou VI; Zavos A; Nikolakopoulos P
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of asymmetric quantum Otto engine cycles.
    Shastri R; Venkatesh BP
    Phys Rev E; 2022 Aug; 106(2-1):024123. PubMed ID: 36109960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.