These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33265256)

  • 1. Thermodynamic Optimization for an Endoreversible Dual-Miller Cycle (DMC) with Finite Speed of Piston.
    Wu Z; Chen L; Feng H
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-Time Thermodynamic Modeling and a Comparative Performance Analysis for Irreversible Otto, Miller and Atkinson Cycles.
    Zhao J; Xu F
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study.
    Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F
    Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power-Optimal Control of a Stirling Engine's Frictional Piston Motion.
    Paul R; Khodja A; Fischer A; Masser R; Hoffmann KH
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle.
    Wang T; Ge Y; Chen L; Feng H; Yu J
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid.
    Chen L; Ge Y; Liu C; Feng H; Lorenzini G
    Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance optimization of an air-standard irreversible dual-atkinson cycle engine based on the ecological coefficient of performance criterion.
    Gonca G; Sahin B
    ScientificWorldJournal; 2014; 2014():815787. PubMed ID: 25170525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle.
    Zhu F; Chen L; Wang W
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle.
    Wang R; Ge Y; Chen L; Feng H; Wu Z
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Diesel Cycle.
    Shi S; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34203548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Piston Motion for an Alpha-Type Stirling Engine.
    Masser R; Khodja A; Scheunert M; Schwalbe K; Fischer A; Paul R; Hoffmann KH
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-power performance of quantum heat engines in linear response.
    Liu Q; He J; Ma Y; Wang J
    Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-Objective Optimization of Irreversible Atkinson Cycle Based on NSGA-II.
    Shi S; Ge Y; Chen L; Feng H
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-Objective Optimization for an Irreversible Porous Medium Cycle with Linear Variation in Working Fluid's Specific Heat.
    Zang P; Chen L; Ge Y; Shi S; Feng H
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooling Cycle Optimization for a Vuilleumier Refrigerator.
    Paul R; Khodja A; Fischer A; Hoffmann KH
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.