These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33265256)

  • 21. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle.
    Zhai RX; Cui FM; Ma YH; Sun CP; Dong H
    Phys Rev E; 2023 Apr; 107(4):L042101. PubMed ID: 37198805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM; Peña FJ; Cortés N; Vargas P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization, Stability, and Entropy in Endoreversible Heat Engines.
    Gonzalez-Ayala J; Mateos Roco JM; Medina A; Calvo Hernández A
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and simulation study on heat transfer characteristics of aluminium alloy piston under transition conditions.
    Liu Y; Lei J; Wang D; Deng X; Wen J; Wen Z
    Sci Rep; 2022 Jun; 12(1):9262. PubMed ID: 35665771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle.
    Tang C; Chen L; Feng H; Ge Y
    Entropy (Basel); 2021 Feb; 23(3):. PubMed ID: 33652671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle.
    Gong Q; Ge Y; Chen L; Shi S; Feng H
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators.
    Wang J; Ye Z; Lai Y; Li W; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient Power Characteristic Analysis and Multi-Objective Optimization for an Irreversible Simple Closed Gas Turbine Cycle.
    Qiu X; Chen L; Ge Y; Shi S
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite-time thermodynamics: Engine performance improved by optimized piston motion.
    Mozurkewich M; Berry RS
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):1986-8. PubMed ID: 16592997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency of Harmonic Quantum Otto Engines at Maximal Power.
    Deffner S
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law.
    Xu H; Chen L; Ge Y; Feng H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Performance Analysis of a Simplified Curzon-Ahlborn Engine.
    Páez-Hernández RT; Chimal-Eguía JC; Ladino-Luna D; Velázquez-Arcos JM
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoelectric generator in endoreversible approximation: The effect of heat-transfer law under finite physical dimensions constraint.
    Kaur J; Johal RS; Feidt M
    Phys Rev E; 2022 Mar; 105(3-1):034122. PubMed ID: 35428100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem.
    Hua Y; Guo ZY
    Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.