These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33265519)

  • 1. Thermal Analysis of the Receiver of a Standalone Pilot Solar Dish-Stirling System.
    Gholamalizadeh E; Chung JD
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient performance prediction of solar dish concentrator integrated with stirling and TEG for small scale irrigation system: A case of Ethiopia.
    Bekele EA; Ancha VR
    Heliyon; 2022 Sep; 8(9):e10629. PubMed ID: 36158084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-driven Dish Stirling System for sustainable power generation in Bangladesh: A case study in Cox's Bazar.
    Hossain MS; Ihsan Rahat MA; Khan MSH; Salehin S; Karim MR
    Heliyon; 2023 Mar; 9(3):e14322. PubMed ID: 36938446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar parabolic dish collector for concentrated solar thermal systems: a review and recommendations.
    Kumar KH; Daabo AM; Karmakar MK; Hirani H
    Environ Sci Pollut Res Int; 2022 May; 29(22):32335-32367. PubMed ID: 35142997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental performance and economic analysis of finned solar receiver for parabolic dish solar collector.
    Vishnu SK; Senthil R
    Heliyon; 2023 Nov; 9(11):e21236. PubMed ID: 38027558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study on a cylindrical-conical cavity receiver for the parabolic dish collector.
    Esfanjani P; Mahmoudi A; Valipour MS; Rashidi S
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):6517-6529. PubMed ID: 35997878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of focal image for solar parabolic dish concentrator with square facets-an analytical model.
    Kopalakrishnaswami AS; Loni R; Najafi G; Natarajan SK
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):20065-20076. PubMed ID: 36251193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of the thermal performance of heat storage-integrated solar receiver for parabolic dish collectors.
    Vishnu SK; Senthil R
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):76044-76059. PubMed ID: 37233932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The place of solar power: an economic analysis of concentrated and distributed solar power.
    Banoni VA; Arnone A; Fondeur M; Hodge A; Offner JP; Phillips JK
    Chem Cent J; 2012 Apr; 6 Suppl 1(Suppl 1):S6. PubMed ID: 22540991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical modeling of a cylindrical-hemispherical receiver for parabolic dish concentrator.
    Kumar KH; Reddy DS; Karmakar M
    Environ Sci Pollut Res Int; 2023 May; 30(22):63121-63134. PubMed ID: 36952169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system.
    Kopalakrishnaswami AS; Natarajan SK
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7548-7558. PubMed ID: 34476708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study and comparative analysis of modified solar paraboloidal dish-thermoelectric generator systems.
    Verma V; Rana KB; Sharma SS
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):3983-3993. PubMed ID: 32592056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Historical overview of power generation in solar parabolic dish collector system.
    Sahu SK; Kopalakrishnaswami AS; Natarajan SK
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):64404-64446. PubMed ID: 35857163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the photo-thermal conversion behavior and extinction coefficient of activated carbon nanofluids for direct absorption solar collector applications.
    Kumar PG; Vigneswaran S; Meikandan M; Sakthivadivel D; Salman M; Thakur AK; Sathyamurthy R; Kim SC
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13188-13200. PubMed ID: 34585351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
    Sowale A; Kolios AJ; Fidalgo B; Somorin T; Parker A; Williams L; Collins M; McAdam E; Tyrrel S
    Energy Convers Manag; 2018 Jun; 165():528-540. PubMed ID: 29861520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimisation study of a solar tower receiver: the influence of geometry and material, heat flux, and heat transfer fluid on thermal and mechanical performance.
    Shatnawi H; Lim CW; Ismail FB; Aldossary A
    Heliyon; 2021 Jul; 7(7):e07489. PubMed ID: 34307940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a software application to analyze thermal and kinematic multimodels of Stirling engines.
    Auñón JA; Pérez JM; Martín MJ; Auñón F; Nuñez D
    Heliyon; 2023 Sep; 9(9):e18487. PubMed ID: 37662715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.
    Günay AA; Kim H; Nagarajan N; Lopez M; Kantharaj R; Alsaati A; Marconnet A; Lenert A; Miljkovic N
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12603-12611. PubMed ID: 29565115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Radiation-Absorbing Hydrogel Film for Efficient Thermal Utilization on Solar Evaporator Surfaces.
    Meng S; Zha XJ; Wu C; Zhao X; Yang MB; Yang W
    Nano Lett; 2021 Dec; 21(24):10516-10524. PubMed ID: 34878275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.