These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33265545)
1. A Novel Fault Diagnosis Method of Rolling Bearings Based on AFEWT-KDEMI. Ge M; Wang J; Zhang F; Bai K; Ren X Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265545 [TBL] [Abstract][Full Text] [Related]
2. Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing. Xu Y; Chen J; Ma C; Zhang K; Cao J Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267203 [TBL] [Abstract][Full Text] [Related]
3. Early Fault Detection of Rolling Bearings Based on Time-Varying Filtering Empirical Mode Decomposition and Adaptive Multipoint Optimal Minimum Entropy Deconvolution Adjusted. Song S; Wang W Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895573 [TBL] [Abstract][Full Text] [Related]
4. Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition. Wang L; Li H; Xi T; Wei S Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067814 [TBL] [Abstract][Full Text] [Related]
5. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm. Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545 [TBL] [Abstract][Full Text] [Related]
6. A Novel Method Based on Multi-Island Genetic Algorithm Improved Variational Mode Decomposition and Multi-Features for Fault Diagnosis of Rolling Bearing. Liang T; Lu H Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286764 [TBL] [Abstract][Full Text] [Related]
7. A Novel Adaptive Signal Processing Method Based on Enhanced Empirical Wavelet Transform Technology. Zhao H; Zuo S; Hou M; Liu W; Yu L; Yang X; Deng W Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30282951 [TBL] [Abstract][Full Text] [Related]
8. A new fault feature extraction method of rolling bearings based on the improved self-selection ICEEMDAN-permutation entropy. Xiao M; Wang Z; Zhao Y; Geng G; Dustdar S; Donta PK; Ji G ISA Trans; 2023 Dec; 143():536-547. PubMed ID: 37770368 [TBL] [Abstract][Full Text] [Related]
9. Extreme Interval Entropy Based on Symbolic Analysis and a Self-Adaptive Method. Xu Z; Shi Y; Zhao Q; Li W; Liu K Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33266953 [TBL] [Abstract][Full Text] [Related]
10. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis. Zhen D; Guo J; Xu Y; Zhang H; Gu F Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448 [TBL] [Abstract][Full Text] [Related]
11. Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features. Zhan L; Ma F; Zhang J; Li C; Li Z; Wang T Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546904 [TBL] [Abstract][Full Text] [Related]
12. Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. Hu L; Wang L; Chen Y; Hu N; Jiang Y Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081069 [TBL] [Abstract][Full Text] [Related]
13. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing. Liu R; Wang X; Kumar A; Sun B; Zhou Y Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779 [TBL] [Abstract][Full Text] [Related]
14. GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction. Ding J; Huang L; Xiao D; Li X Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244305 [TBL] [Abstract][Full Text] [Related]
15. Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis. Song X; Wei W; Zhou J; Ji G; Hussain G; Xiao M; Geng G Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299863 [TBL] [Abstract][Full Text] [Related]
16. A Comprehensive Fault Diagnosis Method for Rolling Bearings Based on Refined Composite Multiscale Dispersion Entropy and Fast Ensemble Empirical Mode Decomposition. Zhang W; Zhou J Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267394 [TBL] [Abstract][Full Text] [Related]
17. Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm. Jiang W; Shan Y; Xue X; Ma J; Chen Z; Zhang N Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628141 [TBL] [Abstract][Full Text] [Related]
18. Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM. Ye M; Yan X; Jia M Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34208777 [TBL] [Abstract][Full Text] [Related]
19. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism. Wu H; Li J; Zhang Q; Tao J; Meng Z ISA Trans; 2022 Nov; 130():477-489. PubMed ID: 35491253 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings. Li Z; Cui Y; Li L; Chen R; Dong L; Du J Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]