These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33265581)

  • 1. Novel Brain Complexity Measures Based on Information Theory.
    Bonmati E; Bardera A; Feixas M; Boada I
    Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological Filtering of Dynamic Functional Brain Networks Unfolds Informative Chronnectomics: A Novel Data-Driven Thresholding Scheme Based on Orthogonal Minimal Spanning Trees (OMSTs).
    Dimitriadis SI; Salis C; Tarnanas I; Linden DE
    Front Neuroinform; 2017; 11():28. PubMed ID: 28491032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking Regions, Edges and Classifying Tasks in Functional Brain Graphs by Sub-Graph Entropy.
    Sen B; Chu SH; Parhi KK
    Sci Rep; 2019 May; 9(1):7628. PubMed ID: 31110317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain parcellation based on information theory.
    Bonmati E; Bardera A; Boada I
    Comput Methods Programs Biomed; 2017 Nov; 151():203-212. PubMed ID: 28947002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Brain Network Alterations in Patients With Systemic Lupus Erythematosus With Different Cognitive Function States: A Graph Theory Analysis Study.
    Li X; Xia J; Hu J; Chen Q; Li Y; Yin M; Zou H; Zhou W; Zhang P
    J Comput Assist Tomogr; 2024 Mar-Apr 01; 48(2):283-291. PubMed ID: 37757812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy.
    Zhang W; Muravina V; Azencott R; Chu ZD; Paldino MJ
    Comput Math Methods Med; 2018; 2018():6142898. PubMed ID: 30425750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.
    Traxl D; Boers N; Kurths J
    Chaos; 2016 Jun; 26(6):065303. PubMed ID: 27368793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BRAPH: A graph theory software for the analysis of brain connectivity.
    Mijalkov M; Kakaei E; Pereira JB; Westman E; Volpe G;
    PLoS One; 2017; 12(8):e0178798. PubMed ID: 28763447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal structural networks characterize major depressive disorder: a connectome analysis.
    Korgaonkar MS; Fornito A; Williams LM; Grieve SM
    Biol Psychiatry; 2014 Oct; 76(7):567-74. PubMed ID: 24690111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume entropy for modeling information flow in a brain graph.
    Lee H; Kim E; Ha S; Kang H; Huh Y; Lee Y; Lim S; Lee DS
    Sci Rep; 2019 Jan; 9(1):256. PubMed ID: 30670725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph.
    Dimitriadis SI; Drakesmith M; Bells S; Parker GD; Linden DE; Jones DK
    Front Neurosci; 2017; 11():694. PubMed ID: 29311775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.
    Meyer-Bäse A; Roberts RG; Illan IA; Meyer-Bäse U; Lobbes M; Stadlbauer A; Pinker-Domenig K
    Front Comput Neurosci; 2017; 11():87. PubMed ID: 29051730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of global and local complexities of brain networks: A random walks approach.
    Sotero RC; Sanchez-Rodriguez LM; Moradi N; Dousty M
    Netw Neurosci; 2020; 4(3):575-594. PubMed ID: 32885116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-resolved analysis of brain functional connectivity networks with spectral entropy.
    Nicolini C; Forcellini G; Minati L; Bifone A
    Neuroimage; 2020 May; 211():116603. PubMed ID: 32036020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating Changes in Brain Network Properties in HIV-Associated Neurocognitive Disease (HAND) using Mutual Connectivity Analysis (MCA).
    Abidin AZ; D'Souza AM; Nagarajan MB; Wismüller A
    Proc SPIE Int Soc Opt Eng; 2016 Mar; 9788():. PubMed ID: 29170586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Controlling Complex Networks with Local Topological Information.
    Li G; Deng L; Xiao G; Tang P; Wen C; Hu W; Pei J; Shi L; Stanley HE
    Sci Rep; 2018 Mar; 8(1):4593. PubMed ID: 29545560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration in topological organization characteristics of gray matter covariance networks in patients with prediabetes.
    Deng L; Liu H; Liu W; Liao Y; Liang Q; Wang W
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Oct; 47(10):1375-1384. PubMed ID: 36411688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization.
    Serra A; Galdi P; Pesce E; Fratello M; Trojsi F; Tedeschi G; Tagliaferri R; Esposito F
    Int J Neural Syst; 2019 Sep; 29(7):1950007. PubMed ID: 30929575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Network Measures for Groups of Nodes: Application to Normal Aging and Alzheimer's Disease.
    Srivishagan S; Perera AAI; Hojjat A; Ratnarajah N
    Brain Connect; 2020 Aug; 10(6):316-327. PubMed ID: 32458697
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.