These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33265599)

  • 1. Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification.
    Chen N; Majda AJ
    Entropy (Basel); 2018 Jul; 20(7):. PubMed ID: 33265599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems.
    Chen N; Majda AJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems.
    Chen N; Li Y; Liu H
    Chaos; 2022 May; 32(5):053122. PubMed ID: 35650001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model Error, Information Barriers, State Estimation and Prediction in Complex Multiscale Systems.
    Majda AJ; Chen N
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Short and Partial Observations Reduce Model Error and Facilitate Machine Learning Prediction?
    Chen N
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient stochastic superparameterization for geophysical turbulence.
    Grooms I; Majda AJ
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4464-9. PubMed ID: 23487800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear theory for filtering nonlinear multiscale systems with model error.
    Berry T; Harlim J
    Proc Math Phys Eng Sci; 2014 Jul; 470(2167):20140168. PubMed ID: 25002829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State estimation and prediction using clustered particle filters.
    Lee Y; Majda AJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14609-14614. PubMed ID: 27930332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blended particle filters for large-dimensional chaotic dynamical systems.
    Majda AJ; Qi D; Sapsis TP
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7511-6. PubMed ID: 24825886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear stochastic modelling with Langevin regression.
    Callaham JL; Loiseau JC; Rigas G; Brunton SL
    Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210092. PubMed ID: 35153564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting stochastic governing laws by non-local Kramers-Moyal formulae.
    Lu Y; Li Y; Duan J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210195. PubMed ID: 35719068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W; Feng J; Su J; Liang Y
    Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey.
    Stano P; Lendek Z; Braaksma J; Babuska R; de Keizer C; den Dekker AJ
    IEEE Trans Cybern; 2013 Dec; 43(6):1607-24. PubMed ID: 23757593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptual dynamical models for turbulence.
    Majda AJ; Lee Y
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6548-53. PubMed ID: 24753605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variance and Entropy Assignment for Continuous-Time Stochastic Nonlinear Systems.
    Tang X; Zhou Y; Zou Y; Zhang Q
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.
    Sapsis TP; Majda AJ
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13705-10. PubMed ID: 23918398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A random batch method for efficient ensemble forecasts of multiscale turbulent systems.
    Qi D; Liu JG
    Chaos; 2023 Feb; 33(2):023113. PubMed ID: 36859236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.