These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33265671)

  • 1. Statistics of Heat Transfer in Two-Dimensional Turbulent Rayleigh-Bénard Convection at Various Prandtl Number.
    Yang H; Wei Y; Zhu Z; Dou H; Qian Y
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal-Spatial Evolution of Kinetic and Thermal Energy Dissipation Rates in a Three-Dimensional Turbulent Rayleigh-Taylor Mixing Zone.
    Guo W; Guo X; Wei Y; Zhang Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection.
    Emran MS; Schumacher J
    Eur Phys J E Soft Matter; 2012 Oct; 35(10):108. PubMed ID: 23096154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turbulent superstructures in Rayleigh-Bénard convection.
    Pandey A; Scheel JD; Schumacher J
    Nat Commun; 2018 May; 9(1):2118. PubMed ID: 29844392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
    Zhong JQ; Stevens RJ; Clercx HJ; Verzicco R; Lohse D; Ahlers G
    Phys Rev Lett; 2009 Jan; 102(4):044502. PubMed ID: 19257426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plumes and waves in two-dimensional turbulent thermal convection.
    Vincent AP; Yuen DA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2957-63. PubMed ID: 11970101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection.
    Zhu X; Mathai V; Stevens RJAM; Verzicco R; Lohse D
    Phys Rev Lett; 2018 Apr; 120(14):144502. PubMed ID: 29694143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time Evolution Features of Entropy Generation Rate in Turbulent Rayleigh-Bénard Convection with Mixed Insulating and Conducting Boundary Conditions.
    Wei Y; Shen P; Wang Z; Liang H; Qian Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample.
    Stevens RJ; Zhou Q; Grossmann S; Verzicco R; Xia KQ; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):027301. PubMed ID: 22463362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids.
    Schumacher J; Götzfried P; Scheel JD
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9530-5. PubMed ID: 26195793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near wall Prandtl number effects on velocity gradient invariants and flow topologies in turbulent Rayleigh-Bénard convection.
    Yigit S; Hasslberger J; Klein M; Chakraborty N
    Sci Rep; 2020 Sep; 10(1):14887. PubMed ID: 32913221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection.
    He X; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026306. PubMed ID: 19391839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measured thermal dissipation field in turbulent Rayleigh-Bénard convection.
    He X; Tong P; Xia KQ
    Phys Rev Lett; 2007 Apr; 98(14):144501. PubMed ID: 17501276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prandtl-number dependence of interior temperature and velocity fluctuations in turbulent convection.
    Daya ZA; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):045301. PubMed ID: 12443249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection.
    Lakkaraju R; Stevens RJ; Verzicco R; Grossmann S; Prosperetti A; Sun C; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056315. PubMed ID: 23214884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries.
    Whitehead JP; Doering CR
    Phys Rev Lett; 2011 Jun; 106(24):244501. PubMed ID: 21770573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal boundary layer equation for turbulent Rayleigh-Bénard convection.
    Shishkina O; Horn S; Wagner S; Ching ES
    Phys Rev Lett; 2015 Mar; 114(11):114302. PubMed ID: 25839274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence.
    Sun C; Zhou Q; Xia KQ
    Phys Rev Lett; 2006 Oct; 97(14):144504. PubMed ID: 17155258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.