These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Quality Enhancement of Ultrasonic TOFD Signals from Carbon Steel Weld Pad with Notches. Manjula K; Vijayarekha K; Venkatraman B Ultrasonics; 2018 Mar; 84():264-271. PubMed ID: 29175566 [TBL] [Abstract][Full Text] [Related]
44. Multi-mode laser-ultrasound imaging using Time-domain Synthetic Aperture Focusing Technique (T-SAFT). Ying KN; Ni CY; Dai LN; Yuan L; Kan WW; Shen ZH Photoacoustics; 2022 Sep; 27():100370. PubMed ID: 35646591 [TBL] [Abstract][Full Text] [Related]
45. Experimental study of high frame rate imaging with limited diffraction beams. Lu JY IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):84-97. PubMed ID: 18244161 [TBL] [Abstract][Full Text] [Related]
46. Bandwidth and resolution enhancement through pulse compression. Oelze ML IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):768-81. PubMed ID: 17441586 [TBL] [Abstract][Full Text] [Related]
47. Deconvolution imaging of weak reflective pipe defects using guided-wave signals captured by a scanning receiver. Sun Z; Sun A; Ju BF Rev Sci Instrum; 2017 Feb; 88(2):024904. PubMed ID: 28249510 [TBL] [Abstract][Full Text] [Related]
49. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique. McCollough CH; Leng S; Sunnegardh J; Vrieze TJ; Yu L; Lane J; Raupach R; Stierstorfer K; Flohr T Med Phys; 2013 Jun; 40(6):061904. PubMed ID: 23718595 [TBL] [Abstract][Full Text] [Related]
50. Enhancing Time-of-Flight Diffraction (TOFD) Inspection through an Innovative Curved-Sole Probe Design. Sanchez Duo I; Lanzagorta JL; Aizpurua Maestre I; Galdos L Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409400 [TBL] [Abstract][Full Text] [Related]
51. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison. Kolkoori S; Chitti Venkata K; Balasubramaniam K Ultrasonics; 2015 Jan; 55():33-41. PubMed ID: 25200698 [TBL] [Abstract][Full Text] [Related]
52. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Matz V; Smid R; Starman S; Kreidl M Ultrasonics; 2009 Dec; 49(8):752-9. PubMed ID: 19570560 [TBL] [Abstract][Full Text] [Related]
56. SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR. Lee H; Park J Magn Reson Med; 2013 Jul; 70(1):106-16. PubMed ID: 22890939 [TBL] [Abstract][Full Text] [Related]
57. Practical spread spectrum pulse compression for ultrasonic tissue imaging. Welch LR; Fox MD IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):349-55. PubMed ID: 18244186 [TBL] [Abstract][Full Text] [Related]
58. Synthetic aperture techniques with a virtual source element. Frazier CH; O'Brien WR IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):196-207. PubMed ID: 18244172 [TBL] [Abstract][Full Text] [Related]
59. Impact of element pitch on synthetic aperture ultrasound imaging. Hasegawa H; de Korte CL J Med Ultrason (2001); 2016 Jul; 43(3):317-25. PubMed ID: 26896949 [TBL] [Abstract][Full Text] [Related]
60. Ultrasonic Defect Characterization in Heavy Rotor Forgings by Means of the Synthetic Aperture Focusing Technique and Optimization Methods. Fendt KT; Mooshofer H; Rupitsch SJ; Ermert H IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jun; 63(6):874-85. PubMed ID: 27116736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]