These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33265740)

  • 1. Entropy Production Associated with Aggregation into Granules in a Subdiffusive Environment.
    Weber P; Bełdowski P; Bier M; Gadomski A
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm.
    Runfola C; Vitali S; Pagnini G
    R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Fokker-Planck equation for fractal media.
    Tarasov VE
    Chaos; 2005 Jun; 15(2):23102. PubMed ID: 16035878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (Nano)Granules-Involving Aggregation at a Passage to the Nanoscale as Viewed in Terms of a Diffusive Heisenberg Relation.
    Gadomski A
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38248201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation.
    Weron A; Magdziarz M; Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036704. PubMed ID: 18517554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Fokker-Planck-Kramers equation and entropy production.
    de Oliveira MJ
    Phys Rev E; 2016 Jul; 94(1-1):012128. PubMed ID: 27575097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving.
    Heinsalu E; Patriarca M; Goychuk I; Hänggi P
    Phys Rev Lett; 2007 Sep; 99(12):120602. PubMed ID: 17930490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces.
    Henry BI; Langlands TA; Straka P
    Phys Rev Lett; 2010 Oct; 105(17):170602. PubMed ID: 21231032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow dynamics and subdiffusion in a non-Hamiltonian system with long-range forces.
    Bachelard R; Piovella N; Gupta S
    Phys Rev E; 2019 Jan; 99(1-1):010104. PubMed ID: 30780368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy production in irreversible systems described by a Fokker-Planck equation.
    Tomé T; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021120. PubMed ID: 20866788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy production and nonlinear Fokker-Planck equations.
    Casas GA; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061136. PubMed ID: 23367922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear inhomogeneous Fokker-Planck equations: Entropy and free-energy time evolution.
    Sicuro G; Rapčan P; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062117. PubMed ID: 28085323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force.
    Magdziarz M; Weron A; Klafter J
    Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy production by active particles: Coupling of odd and even functions of velocity.
    Chaudhuri D
    Phys Rev E; 2016 Sep; 94(3-1):032603. PubMed ID: 27739815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous diffusion with absorbing boundary.
    Kantor Y; Kardar M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061121. PubMed ID: 18233828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.