These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33265797)

  • 1. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply.
    Zischg J; Rauch W; Sitzenfrei R
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-objective optimization model for the flexible design of water distribution networks.
    Marques J; Cunha M; Savić D
    J Environ Manage; 2018 Nov; 226():308-319. PubMed ID: 30125810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban water supply systems' resilience under earthquake scenario.
    Bata MH; Carriveau R; Ting DS
    Sci Rep; 2022 Nov; 12(1):20555. PubMed ID: 36446801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city.
    Krueger E; Klinkhamer C; Urich C; Zhan X; Rao PSC
    Phys Rev E; 2017 Mar; 95(3-1):032312. PubMed ID: 28415303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing reclaimed water distribution network resilience with cost-effective meshing.
    Martínez D; Bergillos S; Corominas L; Comas J; Wang F; Kooij R; Calle E
    Sci Total Environ; 2024 Aug; 938():173051. PubMed ID: 38740194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks.
    Santonastaso GF; Di Nardo A; Di Natale M; Giudicianni C; Greco R
    Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability analysis of water distribution networks to accidental pipe burst.
    Wéber R; Huzsvár T; Hős C
    Water Res; 2020 Oct; 184():116178. PubMed ID: 32707306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures.
    Zhou X; Liu S; Xu W; Xin K; Wu Y; Meng F
    Water Res; 2022 Jun; 217():118416. PubMed ID: 35429881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient supply management in water flow network using graph spectral techniques.
    Gopalsamy T; Thankappan V; Chandramohan S
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):2530-2543. PubMed ID: 35932342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing the analysis of water pipe failures: a probabilistic framework for identifying significant factors.
    Muddassir M; Zayed T; Taiwo R; Ben Seghier MEA
    Sci Rep; 2024 Aug; 14(1):19218. PubMed ID: 39160188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Data-Driven Leak Localization in Water Distribution Networks Using Pressure Measurements and Topological Information.
    Alves D; Blesa J; Duviella E; Rajaoarisoa L
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling complexity in engineered infrastructure system: Water distribution network as an example.
    Zeng F; Li X; Li K
    Chaos; 2017 Feb; 27(2):023105. PubMed ID: 28249393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water leakage management by district metered areas at water distribution networks.
    Özdemir Ö
    Environ Monit Assess; 2018 Mar; 190(4):182. PubMed ID: 29497875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time control of water distribution networks: A state-of-the-art review.
    Creaco E; Campisano A; Fontana N; Marini G; Page PR; Walski T
    Water Res; 2019 Sep; 161():517-530. PubMed ID: 31229732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated hydraulic modelling of water supply and urban drainage networks for assessment of decentralized options.
    Sitzenfrei R; Rauch W
    Water Sci Technol; 2014; 70(11):1817-24. PubMed ID: 25500471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of topological, empirical and optimization-based approaches for locating quality detection points in water distribution networks.
    Santonastaso GF; Di Nardo A; Creaco E; Musmarra D; Greco R
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33844-33853. PubMed ID: 32851529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.