These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33265797)

  • 21. A complex network based model for detecting isolated communities in water distribution networks.
    Sheng N; Jia Y; Xu Z; Ho SL; Kan CW
    Chaos; 2013 Dec; 23(4):043102. PubMed ID: 24387541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality zones automatically identified in water distribution networks by applying data clustering methods to conductivity measurements.
    Mandel P; Wang Y; Parre A; Féliers C; Heim V
    Water Res; 2021 Dec; 207():117716. PubMed ID: 34818594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graph neural network for integrated water network partitioning and dynamic district metered areas.
    Fu M; Rong K; Huang Y; Zhang M; Zheng L; Zheng J; Falah MW; Yaseen ZM
    Sci Rep; 2022 Nov; 12(1):19466. PubMed ID: 36376376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties.
    Urich C; Rauch W
    Water Res; 2014 Dec; 66():374-389. PubMed ID: 25240118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A convenient and stable graph-based pressure estimation methodology for water distribution networks: Development and field validation.
    Zhou X; Zhang J; Guo S; Liu S; Xin K
    Water Res; 2023 Apr; 233():119747. PubMed ID: 36841165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decision support system to divide a large network into suitable District Metered Areas.
    Gomes R; Marques AS; Sousa J
    Water Sci Technol; 2012; 65(9):1667-75. PubMed ID: 22508131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
    Rathi S; Gupta R
    J Environ Sci Eng; 2014 Apr; 56(2):169-78. PubMed ID: 26563063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust sensor placement for sustainable leakage management in water distribution networks of developing economies: A hybrid decision support framework.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Sen D
    J Environ Manage; 2022 Oct; 320():115816. PubMed ID: 35932744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A risk-based soft sensor for failure rate monitoring in water distribution network via adaptive neuro-fuzzy interference systems.
    Gheibi M; Moezzi R; Taghavian H; Wacławek S; Emrani N; Mohtasham M; Khaleghiabbasabadi M; Koci J; Yeap CSY; Cyrus J
    Sci Rep; 2023 Jul; 13(1):12200. PubMed ID: 37500665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal Pressure Sensor Deployment for Leak Identification in Water Distribution Networks.
    Yang G; Wang H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks.
    Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I
    Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated approach for optimal sensor placement and state estimation: A case study on water distribution networks.
    Mankad J; Natarajan B; Srinivasan B
    ISA Trans; 2022 Apr; 123():272-285. PubMed ID: 34130860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation.
    Yoo DG; Chang DE; Song YH; Lee JH
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Quantitative Metric Based on a Complete and Unique Characterization of Neural Network Activity: 4D Shannon's Entropy.
    Deshpande SS; van Drongelen W
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible Reconfiguration of Existing Urban Water Infrastructure Systems.
    Perelman LS; Allen M; Preis A; Iqbal M; Whittle AJ
    Environ Sci Technol; 2015 Nov; 49(22):13378-84. PubMed ID: 26465822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive urban drinking water supply model using the effect of node elevation and head loss formula: A case study.
    Wannapop R; Jearsiripongkul T; Jiamjiroch K
    Heliyon; 2024 Mar; 10(5):e26181. PubMed ID: 38434303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.