These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 33265849)

  • 1. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes.
    Anderson J; Moradi S; Rafiq T
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations.
    Wei Q; Wang W; Zhou H; Metzler R; Chechkin A
    Phys Rev E; 2023 Aug; 108(2-1):024125. PubMed ID: 37723675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Langevin description of superdiffusive Lévy processes.
    Eule S; Zaburdaev V; Friedrich R; Geisel T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041134. PubMed ID: 23214556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.
    Nezhadhaghighi MG
    Phys Rev E; 2017 Aug; 96(2-1):022113. PubMed ID: 28950523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous diffusion in nonhomogeneous media: time-subordinated Langevin equation approach.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):030102. PubMed ID: 24730774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic dynamics underlying anomalous diffusion.
    Kaniadakis G; Lapenta G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3246-9. PubMed ID: 11088820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives.
    Likhomanova P; Kalashnikov I
    Phys Rev E; 2020 Aug; 102(2-1):022108. PubMed ID: 32942441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights.
    Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations.
    Czégel D; Balogh SG; Pollner P; Palla G
    Sci Rep; 2018 Jan; 8(1):1883. PubMed ID: 29382874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Giuggioli L; Neu Z
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levy diffusion in a force field, huber relaxation kinetics, and nonequilibrium thermodynamics: H theorem for enhanced diffusion with Levy white noise.
    Vlad MO; Ross J; Schneider FW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1743-63. PubMed ID: 11088636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional Fokker-Planck equation for Lévy flights in nonhomogeneous environments.
    Srokowski T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):040104. PubMed ID: 19518159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions.
    Bologna M; Tsallis C; Grigolini P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2213-8. PubMed ID: 11088687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.