These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33265866)

  • 1. Unconventional Deformation Behaviours of Nanoscaled High-Entropy Alloys.
    Bu Y; Peng S; Wu S; Wei Y; Wang G; Liu J; Wang H
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic deformation and strengthening mechanism of FCC/HCP nano-laminated dual-phase CoCrFeMnNi high entropy alloy.
    Huang C; Yao Y; Peng X; Chen S
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34555821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Printability, Microstructure, and Mechanical Properties of Fe
    Li K; Trofimov V; Han C; Hu G; Dong Z; Zou Y; Wang Z; Yan F; Fu Z; Yang Y
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles.
    Ikeda Y; Körmann F; Tanaka I; Neugebauer J
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys.
    Zhao YF; Feng XB; Zhang JY; Lu Y; Wu SH; Wang YQ; Wu K; Liu G; Sun J
    Nanoscale; 2020 Jul; 12(26):14135-14149. PubMed ID: 32597912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
    Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z
    Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy.
    Sun X; Zhang H; Li W; Ding X; Wang Y; Vitos L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31887990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy.
    Xu Q; Guan HQ; Zhong ZH; Huang SS; Zhao JJ
    Sci Rep; 2021 Jan; 11(1):608. PubMed ID: 33436704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient cell-structured high-entropy alloy with exceptional strength and ductility.
    Pan Q; Zhang L; Feng R; Lu Q; An K; Chuang AC; Poplawsky JD; Liaw PK; Lu L
    Science; 2021 Nov; 374(6570):984-989. PubMed ID: 34554824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Observation of Cellular Precipitation in an Ni
    Kenedy GR; Chemeli KR; Cheng WC
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical data set for first-principles calculations of stacking fault energies in an AlNbTaTiV high entropy alloy.
    Strother JD; Hargather CZ
    Data Brief; 2021 Feb; 34():106670. PubMed ID: 33426240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indentation-induced plastic behaviour of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminate: an atomic simulation.
    Feng H; Tang J; Chen H; Tian Y; Fang Q; Li J; Liu F
    RSC Adv; 2020 Mar; 10(16):9187-9192. PubMed ID: 35497251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design metastability in high-entropy alloys by tailoring unstable fault energies.
    Wang X; De Vecchis RR; Li C; Zhang H; Hu X; Sridar S; Wang Y; Chen W; Xiong W
    Sci Adv; 2022 Sep; 8(36):eabo7333. PubMed ID: 36083911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irradiation-Induced Extremes Create Hierarchical Face-/Body-Centered-Cubic Phases in Nanostructured High Entropy Alloys.
    Jiang L; Hu YJ; Sun K; Xiu P; Song M; Zhang Y; Boldman WL; Crespillo ML; Rack PD; Qi L; Weber WJ; Wang L
    Adv Mater; 2020 Oct; 32(39):e2002652. PubMed ID: 32820560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys.
    Liang YJ; Wang L; Wen Y; Cheng B; Wu Q; Cao T; Xiao Q; Xue Y; Sha G; Wang Y; Ren Y; Li X; Wang L; Wang F; Cai H
    Nat Commun; 2018 Oct; 9(1):4063. PubMed ID: 30282971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Properties and Microstructure of FeCoNi(CuAl)
    Li Z; Wang C; Yu L; Gu Y; Pan M; Tan X; Xu H
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring Compressive Strength and Absorption Energy of Lightweight Multi-Phase AlCuSiFeX (X = Cr, Mn, Zn, Sn) High-Entropy Alloys Processed via Powder Metallurgy.
    Sharma A; Lee H; Ahn B
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy.
    Okamoto NL; Fujimoto S; Kambara Y; Kawamura M; Chen ZM; Matsunoshita H; Tanaka K; Inui H; George EP
    Sci Rep; 2016 Oct; 6():35863. PubMed ID: 27775026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the microstructure and deformation mechanism of an FeCoCrNiAl0.5 high entropy alloy during nanoscratching: a combined atomistic and physical model study.
    Zhang Y; Yang W; Peng J; Wang A; Fan W; Li J
    RSC Adv; 2024 Jun; 14(26):18258-18270. PubMed ID: 38911269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys.
    Ding J; Yu Q; Asta M; Ritchie RO
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8919-8924. PubMed ID: 30127034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.