BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 33265976)

  • 1. Effect of Silica Size and Content on Superamphiphobic Properties of Silica-Fluoropolymer Core-Shell Coatings.
    Lee J; Hwang HS; Lo TNH; Koh WG; Park I
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33265976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles.
    Wang T; Lv C; Ji L; He X; Wang S
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49155-49164. PubMed ID: 32915528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles.
    Lee SG; Ham DS; Lee DY; Bong H; Cho K
    Langmuir; 2013 Dec; 29(48):15051-7. PubMed ID: 24224524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings.
    Yuan R; Wu S; Yu P; Wang B; Mu L; Zhang X; Zhu Y; Wang B; Wang H; Zhu J
    ACS Appl Mater Interfaces; 2016 May; 8(19):12481-93. PubMed ID: 27136103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earthicle: The Design of a Conceptually New Type of Particle.
    Uskoković V; Pernal S; Wu VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Robust Waterborne Superamphiphobic Coatings with Antifouling, Heat Insulation, and Anticorrosion.
    Qiao Z; Ren G; Chen X; Gao Y; Tuo Y; Lu C
    ACS Omega; 2023 Jan; 8(1):804-818. PubMed ID: 36643432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes.
    Zhang J; Yu B; Gao Z; Li B; Zhao X
    Langmuir; 2017 Jan; 33(2):510-518. PubMed ID: 28025880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for preparing controllable, superhydrophobic, strongly sticky surfaces using SiO
    Kim SH; Kang HS; Sohn EH; Chang BJ; Park IJ; Lee SG
    RSC Adv; 2021 Jul; 11(38):23631-23636. PubMed ID: 35479804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation.
    Zhang J; Yu B; Wei Q; Li B; Li L; Yang Y
    J Colloid Interface Sci; 2019 Oct; 554():250-259. PubMed ID: 31301525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2020 Oct; 578():262-272. PubMed ID: 32531556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candle soot as a template for a transparent robust superamphiphobic coating.
    Deng X; Mammen L; Butt HJ; Vollmer D
    Science; 2012 Jan; 335(6064):67-70. PubMed ID: 22144464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers.
    Zhang G; Lin S; Wyman I; Zou H; Hu J; Liu G; Wang J; Li F; Liu F; Hu M
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13466-77. PubMed ID: 24256180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Transparent, Robust Hydrophobic, and Amphiphilic Organic-Inorganic Hybrid Coatings for Antifogging and Antibacterial Applications.
    Jeon Y; Nagappan S; Li XH; Lee JH; Shi L; Yuan S; Lee WK; Ha CS
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6615-6630. PubMed ID: 33507059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Waterborne Superamphiphobic Coatings with Antifouling, High Temperature Resistance, and Corrosion Resistance.
    Ren G; Qiao Z; Hui Z; Tuo Y; Zheng W; Chen X; Li S
    ACS Omega; 2023 Apr; 8(15):13578-13592. PubMed ID: 37091376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent Oil-Water Separating Spiky SiO
    Nguyen NB; Ly NH; Tran HN; Son SJ; Joo SW; Vasseghian Y; Osman SM; Luque R
    Small Methods; 2023 Mar; 7(3):e2201257. PubMed ID: 36683199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes.
    Zhai N; Fan L; Li L; Zhang J
    J Colloid Interface Sci; 2017 Nov; 505():622-630. PubMed ID: 28651202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Fabrication of Ag Nanoparticles-Coated Silica Core–Shell Microspheres and Its Optical Properties.
    Ma J; Zhao Q; Li Y; Bao J
    J Nanosci Nanotechnol; 2017 Jan; 17(1):474-81. PubMed ID: 29624326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.
    Petrov A; Lehmann H; Finsel M; Klinke C; Weller H; Vossmeyer T
    Langmuir; 2016 Jan; 32(3):848-57. PubMed ID: 26731341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.