BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33266075)

  • 1. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs.
    Wang Y; Zhang C; Wu H; Feng P
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33266075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Emerging Role of Tetrazines in Drug-Activation Chemistries.
    Neumann K; Gambardella A; Bradley M
    Chembiochem; 2019 Apr; 20(7):872-876. PubMed ID: 30394615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrazine-Triggered Bioorthogonal Cleavage of trans-Cyclooctene-Caged Phenols Using a Minimal Self-Immolative Linker Strategy.
    Keppel P; Sohr B; Kuba W; Goldeck M; Skrinjar P; Carlson JCT; Mikula H
    Chembiochem; 2022 Oct; 23(20):e202200363. PubMed ID: 35921044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction.
    He X; Li J; Liang X; Mao W; Deng X; Qin M; Su H; Wu H
    Nat Commun; 2024 Apr; 15(1):2831. PubMed ID: 38565562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrazine-Mediated Bioorthogonal System for Prodrug Activation, Photothermal Therapy, and Optoacoustic Imaging.
    Xie X; Li B; Wang J; Zhan C; Huang Y; Zeng F; Wu S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41875-41888. PubMed ID: 31638763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation.
    Zhao Y; Yao Q; Chen J; Zhang R; Song J; Gao Y
    Biomater Sci; 2022 Sep; 10(19):5662-5668. PubMed ID: 35996984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective activation of prodrugs in breast cancer using metabolic glycoengineering and the tetrazine ligation bioorthogonal reaction.
    Mitry MMA; Dallas ML; Boateng SY; Greco F; Osborn HMI
    Bioorg Chem; 2024 Jun; 147():107304. PubMed ID: 38643563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated tetrazines enable precision live-cell bioorthogonal chemistry.
    Liu L; Zhang D; Johnson M; Devaraj NK
    Nat Chem; 2022 Sep; 14(9):1078-1085. PubMed ID: 35788560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction.
    Suehiro F; Fujii S; Nishimura T
    Chem Commun (Camb); 2022 Jun; 58(50):7026-7029. PubMed ID: 35642953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted delivery of PROTAC-based prodrug activated by bond-cleavage bioorthogonal chemistry for microneedle-assisted cancer therapy.
    Huang J; Yao Z; Li B; Ping Y
    J Control Release; 2023 Sep; 361():270-279. PubMed ID: 37541594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-Metal-Mediated versus Tetrazine-Triggered Bioorthogonal Release Reactions: Direct Comparison and Combinations Thereof.
    Mancuso F; Rahm M; Dzijak R; Mertlíková-Kaiserová H; Vrabel M
    Chempluschem; 2020 Aug; 85(8):1669-1675. PubMed ID: 32757364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioorthogonal Decaging Reactions for Targeted Drug Activation.
    Davies S; Stenton BJ; Bernardes GJL
    Chimia (Aarau); 2018 Nov; 72(11):771-776. PubMed ID: 30514419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A General Strategy for Macrotheranostic Prodrug Activation: Synergy between the Acidic Tumor Microenvironment and Bioorthogonal Chemistry.
    Dong Y; Tu Y; Wang K; Xu C; Yuan Y; Wang J
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7168-7172. PubMed ID: 32003112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Efficiency Bioorthogonal Tumor-Membrane Reactor for In Situ Selective and Sustained Prodrug Activation.
    Ma Y; Zhou Y; Long J; Sun Q; Luo Z; Wang W; Hou T; Yin L; Zhao L; Peng J; Ding Y
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318372. PubMed ID: 38205971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concise Synthesis of Functionalized Cyclobutene Analogues for Bioorthogonal Tetrazine Ligation.
    Sun J; Li J; Sun H; Li C; Wu H
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33429851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrazine-mediated bioorthogonal removal of 3-isocyanopropyl groups enables the controlled release of nitric oxide
    Wu J; Sun T; Yang C; Lv T; Bi Y; Xu Y; Ling Y; Zhao J; Cong R; Zhang Y; Wang J; Wen H; Jiang H; Li F; Huang Z
    Biomater Sci; 2021 Mar; 9(5):1816-1825. PubMed ID: 33458722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Click and release: bioorthogonal approaches to "on-demand" activation of prodrugs.
    Ji X; Pan Z; Yu B; De La Cruz LK; Zheng Y; Ke B; Wang B
    Chem Soc Rev; 2019 Feb; 48(4):1077-1094. PubMed ID: 30724944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a (18) F-labeled tetrazine with favorable pharmacokinetics for bioorthogonal PET imaging.
    Denk C; Svatunek D; Filip T; Wanek T; Lumpi D; Fröhlich J; Kuntner C; Mikula H
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9655-9. PubMed ID: 24989029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Senolysis Enabled by Senescent Cell-Sensitive Bioorthogonal Tetrazine Ligation.
    Chang M; Dong Y; Xu H; Cruickshank-Taylor AB; Kozora JS; Behpour B; Wang W
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202315425. PubMed ID: 38233359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in controllable bioorthogonal catalysis for prodrug activation.
    Liu X; Huang T; Chen Z; Yang H
    Chem Commun (Camb); 2023 Oct; 59(84):12548-12559. PubMed ID: 37791560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.