BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33266297)

  • 1. Development and Validation of an Automated Video Tracking Model for Stabled Horses.
    Kil N; Ertelt K; Auer U
    Animals (Basel); 2020 Nov; 10(12):. PubMed ID: 33266297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pain assessment in horses using automatic facial expression recognition through deep learning-based modeling.
    Lencioni GC; de Sousa RV; de Souza Sardinha EJ; Corrêa RR; Zanella AJ
    PLoS One; 2021; 16(10):e0258672. PubMed ID: 34665834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary evaluation of a behaviour-based system for assessment of post-operative pain in horses following arthroscopic surgery.
    Price J; Catriona S; Welsh EM; Waran NK
    Vet Anaesth Analg; 2003 Jul; 30(3):124-37. PubMed ID: 14498844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated behavior analysis system for freely moving rodents using depth image.
    Wang Z; Mirbozorgi SA; Ghovanloo M
    Med Biol Eng Comput; 2018 Oct; 56(10):1807-1821. PubMed ID: 29560548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Convolutional Neural Network for Real Time Classification, Identification, and Labelling of Vocal Cord and Tracheal Using Laryngoscopy and Bronchoscopy Video.
    Matava C; Pankiv E; Raisbeck S; Caldeira M; Alam F
    J Med Syst; 2020 Jan; 44(2):44. PubMed ID: 31897740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Object Tracking in Heterogeneous environments (MOTHe) for animal video recordings.
    Rathore A; Sharma A; Shah S; Sharma N; Torney C; Guttal V
    PeerJ; 2023; 11():e15573. PubMed ID: 37397020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-Specific Action Classification for Automated Assessment of Human Motor Behavior from Video.
    Rezaei B; Christakis Y; Ho B; Thomas K; Erb K; Ostadabbas S; Patel S
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of inertial measurement units to detect and predict horse behaviour while stabled.
    Anderson K; Morrice-West AV; Walmsley EA; Fisher AD; Whitton RC; Hitchens PL
    Equine Vet J; 2023 Nov; 55(6):1128-1138. PubMed ID: 36537838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Machine Recognition of Facial Expressions of Pain in Horses.
    Andersen PH; Broomé S; Rashid M; Lundblad J; Ask K; Li Z; Hernlund E; Rhodin M; Kjellström H
    Animals (Basel); 2021 Jun; 11(6):. PubMed ID: 34206077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand tremor detection in videos with cluttered background using neural network based approaches.
    Wang X; Garg S; Tran SN; Bai Q; Alty J
    Health Inf Sci Syst; 2021 Dec; 9(1):30. PubMed ID: 34276971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Various Facial Expressions of Horses as a Welfare Indicator Using Deep Learning.
    Kim SM; Cho GJ
    Vet Sci; 2023 Apr; 10(4):. PubMed ID: 37104439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimpanzee face recognition from videos in the wild using deep learning.
    Schofield D; Nagrani A; Zisserman A; Hayashi M; Matsuzawa T; Biro D; Carvalho S
    Sci Adv; 2019 Sep; 5(9):eaaw0736. PubMed ID: 31517043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Manifold Learning Combined With Convolutional Neural Networks for Action Recognition.
    Chen X; Weng J; Lu W; Xu J; Weng J
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):3938-3952. PubMed ID: 28922128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing animal behavior via classifying each video frame using convolutional neural networks.
    Stern U; He R; Yang CH
    Sci Rep; 2015 Sep; 5():14351. PubMed ID: 26394695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time multiple spatiotemporal action localization and prediction approach using deep learning.
    Hammam AA; Soliman MM; Hassanien AE
    Neural Netw; 2020 Aug; 128():331-344. PubMed ID: 32470798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the automation of early-stage human embryo development detection.
    Raudonis V; Paulauskaite-Taraseviciene A; Sutiene K; Jonaitis D
    Biomed Eng Online; 2019 Dec; 18(1):120. PubMed ID: 31830988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerized detection of supporting forelimb lameness in the horse using an artificial neural network.
    Schobesberger H; Peham C
    Vet J; 2002 Jan; 163(1):77-84. PubMed ID: 11749140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated segmentation and tracking of non-rigid objects in time-lapse microscopy videos of polymorphonuclear neutrophils.
    Brandes S; Mokhtari Z; Essig F; Hünniger K; Kurzai O; Figge MT
    Med Image Anal; 2015 Feb; 20(1):34-51. PubMed ID: 25465844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the Horse Grimace Scale (HGS) to Assess Pain Associated with Acute Laminitis in Horses (Equus caballus).
    Dalla Costa E; Stucke D; Dai F; Minero M; Leach MC; Lebelt D
    Animals (Basel); 2016 Aug; 6(8):. PubMed ID: 27527224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.