These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33266297)

  • 21. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study.
    De Tobel J; Radesh P; Vandermeulen D; Thevissen PW
    J Forensic Odontostomatol; 2017 Dec; 35(2):42-54. PubMed ID: 29384736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Embryo development stage prediction algorithm for automated time lapse incubators.
    Dirvanauskas D; Maskeliunas R; Raudonis V; Damasevicius R
    Comput Methods Programs Biomed; 2019 Aug; 177():161-174. PubMed ID: 31319944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mounting Behaviour Recognition for Pigs Based on Deep Learning.
    Li D; Chen Y; Zhang K; Li Z
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of different forms of exercise on post inhibitory rebound and unwanted behaviour in stabled horses.
    Freire R; Buckley P; Cooper JJ
    Equine Vet J; 2009 May; 41(5):487-92. PubMed ID: 19642410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of a digital video tracking system for recording pig locomotor behaviour.
    Lind NM; Vinther M; Hemmingsen RP; Hansen AK
    J Neurosci Methods; 2005 Apr; 143(2):123-32. PubMed ID: 15814144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.
    Zhang K; Li D; Huang J; Chen Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D limb movement tracking and analysis for neurological dysfunctions of neonates using multi-camera videos.
    Gu IY; Sowulewski G; Yixiao Yun ; Flisberg A; Thordstein M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2395-2398. PubMed ID: 28268807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Veterinary student competence in equine lameness recognition and assessment: a mixed methods study.
    Starke SD; May SA
    Vet Rec; 2017 Aug; 181(7):168. PubMed ID: 28801497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking.
    Huang P; Yu G; Lu H; Liu D; Xing L; Yin Y; Kovalchuk N; Xing L; Li D
    Med Phys; 2019 May; 46(5):2275-2285. PubMed ID: 30912590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning approach to track Arabidopsis seedlings' circumnutation from time-lapse videos.
    Mao Y; Liu H; Wang Y; Brenner ED
    Plant Methods; 2023 Feb; 19(1):18. PubMed ID: 36849890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classification approach for automatic laparoscopic video database organization.
    Twinanda AP; Marescaux J; de Mathelin M; Padoy N
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1449-60. PubMed ID: 25847668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prospective study of automated versus manual annotation of early time-lapse markers in the human preimplantation embryo.
    Kaser DJ; Farland LV; Missmer SA; Racowsky C
    Hum Reprod; 2017 Aug; 32(8):1604-1611. PubMed ID: 28854587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models.
    AlDahoul N; Md Sabri AQ; Mansoor AM
    Comput Intell Neurosci; 2018; 2018():1639561. PubMed ID: 29623089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A convolutional neural network approach for objective video quality assessment.
    Le Callet P; Viard-Gaudin C; Barba D
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1316-27. PubMed ID: 17001990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning a Tracking and Estimation Integrated Graphical Model for Human Pose Tracking.
    Zhao L; Gao X; Tao D; Li X
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3176-86. PubMed ID: 25826809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Equine learning behaviour.
    Murphy J; Arkins S
    Behav Processes; 2007 Sep; 76(1):1-13. PubMed ID: 17400403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated and semi-automated cell tracking: addressing portability challenges.
    Kan A; Chakravorty R; Bailey J; Leckie C; Markham J; Dowling MR
    J Microsc; 2011 Nov; 244(2):194-213. PubMed ID: 21895653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish tracking using convolutional neural networks.
    Xu Z; Cheng XE
    Sci Rep; 2017 Feb; 7():42815. PubMed ID: 28211462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Video Salient Object Detection via Fully Convolutional Networks.
    Wang W; Shen J; Shao L
    IEEE Trans Image Process; 2018 Jan.; 27(1):38-49. PubMed ID: 28945593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.