These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3326646)

  • 1. Sequential appearance of cytoskeletal components during the early stages of neurite outgrowth from cerebellar granule cells in vitro.
    Cambray-Deakin MA; Morgan A; Burgoyne RD
    Brain Res; 1987 Dec; 465(1-2):197-207. PubMed ID: 3326646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular Ca2+ and N-methyl-D-aspartate-stimulated neuritogenesis in rat cerebellar granule cell cultures.
    Cambray-Deakin MA; Burgoyne RD
    Brain Res Dev Brain Res; 1992 Mar; 66(1):25-32. PubMed ID: 1600630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons.
    Chien CL; Mason CA; Liem RK
    J Neurobiol; 1996 Mar; 29(3):304-18. PubMed ID: 8907160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse nestin protein localizes in growth cones of P19 neurons and cerebellar granule cells.
    Yan Y; Yang J; Bian W; Jing N
    Neurosci Lett; 2001 Apr; 302(2-3):89-92. PubMed ID: 11290394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the cytoplasmic distribution of microtubule-associated protein 2 during the differentiation of cultured cerebellar granule cells.
    Alaimo-Beuret D; Matus A
    Neuroscience; 1985 Apr; 14(4):1103-15. PubMed ID: 3889702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential localisation of tyrosinated, detyrosinated, and acetylated alpha-tubulins in neurites and growth cones of dorsal root ganglion neurons.
    Robson SJ; Burgoyne RD
    Cell Motil Cytoskeleton; 1989; 12(4):273-82. PubMed ID: 2655938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunofluorescence study of neurofilament protein expression by developing hippocampal neurons in tissue culture.
    Shaw G; Banker GA; Weber K
    Eur J Cell Biol; 1985 Nov; 39(1):205-16. PubMed ID: 3936712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The organization of 10 nm filaments and microtubules in embryonic neurons from spinal ganglia.
    Jacobs M; Thomas C
    J Neurocytol; 1982 Aug; 11(4):657-69. PubMed ID: 6813431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of neurofilament immunoreactivity in developing rat cerebellum in vitro and in vivo.
    Gilad GM; Gilad VH; Dahl D
    Neurosci Lett; 1989 Jan; 96(1):7-12. PubMed ID: 2927713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunofluorescence distribution of alpha tubulin, beta tubulin and microtubule-associated protein 2 during in vitro maturation of cerebellar granule cell neurones.
    Cumming R; Burgoyne RD; Lytton NA
    Neuroscience; 1984 Jul; 12(3):775-82. PubMed ID: 6382049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of GAP-43 during growth cone development in vitro; immunocytochemical studies.
    Burry RW; Lah JJ; Hayes DM
    J Neurocytol; 1991 Feb; 20(2):133-44. PubMed ID: 1827498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro.
    Zmuda JF; Rivas RJ
    Cell Motil Cytoskeleton; 1998; 41(1):18-38. PubMed ID: 9744296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.
    Nagata I; Ono K; Kawana A; Kimura-Kuroda J
    J Comp Neurol; 2006 Nov; 499(2):274-89. PubMed ID: 16977618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic morphology weaver (wv) mouse cerebellar neurons at the culture substratum.
    Willinger M; Haaksma C
    J Neurosci Res; 1985; 13(1-2):163-82. PubMed ID: 3882972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and immunological analyses of cytoskeletal domains of neurons.
    Peng I; Binder LI; Black MM
    J Cell Biol; 1986 Jan; 102(1):252-62. PubMed ID: 3510221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ganglioside-mediated enhancement of the cytoskeletal organization and activity in neuro-2a neuroblastoma cells.
    Spero DA; Roisen FJ
    Brain Res; 1984 Mar; 315(1):37-48. PubMed ID: 6722580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crayfish neuronal cytoskeleton: an investigation of proteins having neurofilament-like immunoreactivity.
    Weaver DJ; Viancour TA
    Brain Res; 1991 Mar; 544(1):49-58. PubMed ID: 1906771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative method for analysis of in vitro neurite outgrowth.
    Mitchell PJ; Hanson JC; Quets-Nguyen AT; Bergeron M; Smith RC
    J Neurosci Methods; 2007 Aug; 164(2):350-62. PubMed ID: 17570533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of neurite growth in immortalized mouse hypothalamic neurons and rat hippocampal primary cultures by teneurin C-terminal-associated peptide-1.
    Al Chawaf A; St Amant K; Belsham D; Lovejoy DA
    Neuroscience; 2007 Feb; 144(4):1241-54. PubMed ID: 17174479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of PC12 and cerebellar granule cell cultures for evaluating neurite outgrowth using high content analysis.
    Radio NM; Freudenrich TM; Robinette BL; Crofton KM; Mundy WR
    Neurotoxicol Teratol; 2010; 32(1):25-35. PubMed ID: 19559085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.