These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. From maximum power to a trade-off optimization of low-dissipation heat engines: Influence of control parameters and the role of entropy generation. Gonzalez-Ayala J; Calvo Hernández A; Roco JM Phys Rev E; 2017 Feb; 95(2-1):022131. PubMed ID: 28297927 [TBL] [Abstract][Full Text] [Related]
5. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines. Haseli Y Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284 [TBL] [Abstract][Full Text] [Related]
7. Optimization induced by stability and the role of limited control near a steady state. Gonzalez-Ayala J; Guo J; Medina A; Roco JMM; Calvo Hernández A Phys Rev E; 2019 Dec; 100(6-1):062128. PubMed ID: 31962470 [TBL] [Abstract][Full Text] [Related]
8. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
9. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
10. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
11. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
12. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency. Gerstenmaier YC Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798 [TBL] [Abstract][Full Text] [Related]
13. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
14. Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators. Gonzalez-Ayala J; Medina A; Roco JMM; Hernández AC Phys Rev E; 2018 Feb; 97(2-1):022139. PubMed ID: 29548120 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
17. A quantum heat engine driven by atomic collisions. Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327 [TBL] [Abstract][Full Text] [Related]
18. Local-stability analysis of a low-dissipation heat engine working at maximum power output. Reyes-Ramírez I; Gonzalez-Ayala J; Calvo Hernández A; Santillán M Phys Rev E; 2017 Oct; 96(4-1):042128. PubMed ID: 29347531 [TBL] [Abstract][Full Text] [Related]
19. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Kheradsoud S; Dashti N; Misiorny M; Potts PP; Splettstoesser J; Samuelsson P Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267490 [TBL] [Abstract][Full Text] [Related]