These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33266766)

  • 1. Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum.
    Zhao X; Qin Y; He C; Jia L; Kou L
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis.
    Cheng Y; Wang Z; Chen B; Zhang W; Huang G
    ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram.
    Yi C; Li Y; Huo X; Tsui KL
    ISA Trans; 2022 Sep; 128(Pt A):498-512. PubMed ID: 34593241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective Informative Frequency Band Selection Based on Negentropy-induced Grey Wolf Optimizer for Fault Diagnosis of Rolling Element Bearings.
    Gu X; Yang S; Liu Y; Hao R; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32225091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform.
    Pang B; Tang G; Tian T; Zhou C
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29662013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings.
    Duan J; Shi T; Zhou H; Xuan J; Zhang Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29738474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
    Chen X; Feng F; Zhang B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rolling Bearing Composite Fault Diagnosis Method Based on Enhanced Harmonic Vector Analysis.
    Lu J; Yin Q; Li S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rolling element bearing fault identification using a novel three-step adaptive and automated filtration scheme based on Gini index.
    Albezzawy MN; Nassef MG; Sawalhi N
    ISA Trans; 2020 Jun; 101():453-460. PubMed ID: 31955946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings.
    Ding C; Zhao M; Lin J; Jiao J
    ISA Trans; 2019 May; 88():199-215. PubMed ID: 30578001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of weak fault using sparse empirical wavelet transform for cyclic fault.
    Lu Y; Xie R; Liang SY
    Int J Adv Manuf Technol; 2018 Nov; 99(5-8):1195-1201. PubMed ID: 31182897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings.
    Xie X; Yang Z; Zhang L; Zeng G; Wang X; Zhang P; Chen G
    Math Biosci Eng; 2022 Jul; 19(10):10424-10444. PubMed ID: 36032001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compound Fault Diagnosis of Rolling Bearing Based on Singular Negentropy Difference Spectrum and Integrated Fast Spectral Correlation.
    Tang G; Tian T
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negentropy Spectrum Decomposition and Its Application in Compound Fault Diagnosis of Rolling Bearing.
    Xu Y; Chen J; Ma C; Zhang K; Cao J
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Early Fault Diagnosis Method of Rolling Bearings on the Basis of Adaptive Frequency Window and Sparse Coding Shrinkage.
    Wan S; Peng B
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines.
    Xiang L; Su H; Li Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Adaptive Multipoint Optimal Minimum Entropy Deconvolution and Application on Bearing Fault Detection in Random Impulsive Noise Environments.
    Wei Y; Xu Y; Hou Y; Li L
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.