These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 33266790)
1. Thermodynamic Analysis of Entropy Generation Minimization in Thermally Dissipating Flow Over a Thin Needle Moving in a Parallel Free Stream of Two Newtonian Fluids. Khan I; Khan WA; Qasim M; Afridi I; Alharbi SO Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266790 [TBL] [Abstract][Full Text] [Related]
2. Effects of MHD and porosity on entropy generation in two incompressible Newtonian fluids over a thin needle in a parallel free stream. Ali F; Imtiaz A; Khan WA; Khan I; Badruddin IA Sci Rep; 2020 Dec; 10(1):22305. PubMed ID: 33339833 [TBL] [Abstract][Full Text] [Related]
3. Quasilinearization numerical technique for dual slip MHD Newtonian fluid flow with entropy generation in thermally dissipating flow above a thin needle. Khan S; Ali F; Khan WA; Imtiaz A; Khan I; Abdeljawad T Sci Rep; 2021 Jul; 11(1):15130. PubMed ID: 34301965 [TBL] [Abstract][Full Text] [Related]
4. Nanomaterial based flow of Prandtl-Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation. Khan MI; Khan SA; Hayat T; Khan MI; Alsaedi A Comput Methods Programs Biomed; 2019 Oct; 180():105017. PubMed ID: 31425940 [TBL] [Abstract][Full Text] [Related]
5. Entropy Minimization for Generalized Newtonian Fluid Flow between Converging and Diverging Channels. Rehman S; Hashim ; Nasr A; Eldin SM; Malik MY Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296108 [TBL] [Abstract][Full Text] [Related]
6. Mechanical analysis of non-Newtonian nanofluid past a thin needle with dipole effect and entropic characteristics. Ramzan M; Khan NS; Kumam P Sci Rep; 2021 Sep; 11(1):19378. PubMed ID: 34588473 [TBL] [Abstract][Full Text] [Related]
7. MHD free convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary condition. Uddin MJ; Khan WA; Ismail AI PLoS One; 2012; 7(11):e49499. PubMed ID: 23166688 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and mathematical analysis of entropy generation in fluid flow subject to aluminum and ethylene glycol nanoparticles. Shah F; Khan MI; Hayat T; Khan MI; Alsaedi A; Khan WA Comput Methods Programs Biomed; 2019 Dec; 182():105057. PubMed ID: 31499421 [TBL] [Abstract][Full Text] [Related]
9. MHD Casson Fluid Flow over a Stretching Sheet with Entropy Generation Analysis and Hall Influence. Abd El-Aziz M; Afify AA Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267306 [TBL] [Abstract][Full Text] [Related]
10. Electromagnetohydrodynamic Electroosmotic Flow and Entropy Generation of Third-Grade Fluids in a Parallel Microchannel. Yang C; Jian Y; Xie Z; Li F Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32316085 [TBL] [Abstract][Full Text] [Related]
11. Entropy optimization analysis in MHD nanomaterials (TiO Ijaz Khan M; Khan SA; Hayat T; Imran Khan M; Alsaedi A Comput Methods Programs Biomed; 2020 Feb; 184():105111. PubMed ID: 31622856 [TBL] [Abstract][Full Text] [Related]
12. Modelling Entropy in Magnetized Flow of Eyring-Powell Nanofluid through Nonlinear Stretching Surface with Chemical Reaction: A Finite Element Method Approach. Saleem S; Gopal D; Shah NA; Feroz N; Kishan N; Chung JD; Safdar S Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683666 [TBL] [Abstract][Full Text] [Related]
13. Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks. Khan N; Riaz I; Hashmi MS; Musmar SA; Khan SU; Abdelmalek Z; Tlili I Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286268 [TBL] [Abstract][Full Text] [Related]
14. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid. Khan MS; Karim I; Islam MS; Wahiduzzaman M Nano Converg; 2014; 1(1):20. PubMed ID: 28191400 [TBL] [Abstract][Full Text] [Related]
15. Insight into the Dynamics of Fractional Maxwell Nano-Fluids Subject to Entropy Generation, Lorentz Force and Heat Source via Finite Difference Scheme. Asjad MI; Usman M; Ali A; Awrejcewicz J; Bednarek M Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630967 [TBL] [Abstract][Full Text] [Related]
16. Transportation of entropy optimization in radiated chemically dissipative flow of Prandtl-Eyring nanofluid with activation energy. Qayyum S; Hayat T; Kanwal M; Alsaedi A; Ijaz Khan M Comput Methods Programs Biomed; 2020 Feb; 184():105130. PubMed ID: 31655304 [TBL] [Abstract][Full Text] [Related]
17. Impacts of entropy generation in radiative peristaltic flow of variable viscosity nanomaterial. Hayat T; Nazir S; Farooq S; Alsaedi A; Momani S Comput Biol Med; 2023 Mar; 155():106699. PubMed ID: 36857941 [TBL] [Abstract][Full Text] [Related]
18. Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation. Khan MI; Alsaedi A; Hayat T; Khan NB Comput Methods Programs Biomed; 2019 Oct; 179():104973. PubMed ID: 31443855 [TBL] [Abstract][Full Text] [Related]
19. Radiative MHD Nanofluid Flow over a Moving Thin Needle with Entropy Generation in a Porous Medium with Dust Particles and Hall Current. Tlili I; Ramzan M; Kadry S; Kim HW; Nam Y Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286128 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of entropy generation in cubic autocatalytic unsteady squeezing flow of nanofluid between two parallel plates. Ijaz Khan M; Rahman MU; Khan SA; Hayat T; Imran Khan M Comput Methods Programs Biomed; 2020 Mar; 185():105149. PubMed ID: 31678796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]