These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33266970)

  • 1. Effect of a Roughness Element on the Hypersonic Boundary Layer Receptivity Due to Different Types of Free-Stream Disturbance with a Single Frequency.
    Shi M; Xu L; Wang Z; Lv H
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33266970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a Roughness Element on the Receptivity of a Hypersonic Boundary Layer over a Blunt Cone Due to Pulse Entropy Disturbance with a Single Frequency.
    Wang Z; Shi M; Tang X; Lv H; Xu L
    Entropy (Basel); 2018 May; 20(6):. PubMed ID: 33265494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.
    Wang Z; Tang X; Lv H; Shi J
    ScientificWorldJournal; 2014; 2014():517242. PubMed ID: 25143983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.
    Wang Z; Tang X; Lv H
    ScientificWorldJournal; 2014; 2014():748504. PubMed ID: 24737993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure Fluctuations induced by a Hypersonic Turbulent Boundary Layer.
    Duan L; Choudhari MM; Zhang C
    J Fluid Mech; 2016 Oct; 804():578-607. PubMed ID: 33442070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers.
    Balakumar P; King RA; Chou A; Owens LR; Kegerise MA
    AIAA J; 2018 Feb; 56(2):510-523. PubMed ID: 33867531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra.
    Balakumar P; Chou A
    AIAA J; 2018 Jan; 56(1):193-208. PubMed ID: 33867530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instability wave-streak interactions in a hypersonic boundary layer at flight conditions.
    Paredes P; Choudhari MM; Li F
    J Fluid Mech; 2019 Jan; 858():474-499. PubMed ID: 33867572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Freestream Disturbances in Conventional Hypersonic Wind Tunnels.
    Duan L; Choudhari MM; Chou A; Munoz F; Ali SRC; Radespiel R; Schilden T; Schröder W; Marineau EC; Casper KM; Chaudhry RS; Candler GV; Gray KA; Schneider SP
    J Spacecr Rockets; 2019 Mar; 56(2):357-368. PubMed ID: 33414565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer.
    Kegerise MA; Rufer SJ
    Exp Fluids; 2016; 57():. PubMed ID: 33867649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of acoustic feedback in boundary-layer instability.
    Wu X
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in the study of transition in the hypersonic boundary layer.
    Lee C; Chen S
    Natl Sci Rev; 2019 Jan; 6(1):155-170. PubMed ID: 34691841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling hypersonic boundary layer transition with localized cooling and metasurface treatments.
    Oz F; Kara K
    Sci Rep; 2024 Jul; 14(1):15928. PubMed ID: 38987632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instability wave-streak interactions in a supersonic boundary layer.
    Paredes P; Choudhari MM; Li F
    J Fluid Mech; 2017 Nov; 831():524-553. PubMed ID: 33510543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental apparatus for investigating the propagation characteristics of the low-frequency electromagnetic waves in hypersonic plasma fluid generated by shock tube.
    Xie K; Sun B; Guo S; Quan L; Liu Y
    Rev Sci Instrum; 2019 Jul; 90(7):073503. PubMed ID: 31370434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Investigation of Roughness Effects on Transition on Spherical Capsules.
    Hein S; Theiss A; Di Giovanni A; Stemmer C; Schilden T; Schröder W; Paredes P; Choudhari MM; Li F; Reshotko E
    J Spacecr Rockets; 2019 Mar; 56(2):388-404. PubMed ID: 33479548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation of boundary acoustic waves along a ZnO layer between two materials.
    Irino T; Shirosaki Y; Shimizu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):701-7. PubMed ID: 18290205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of azimuthal acoustic modes with an unsteady heat source in an annular duct.
    Li L
    J Acoust Soc Am; 2018 Sep; 144(3):1309. PubMed ID: 30424636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition induced by streamwise arrays of roughness elements on a flat plate in Mach 3.5 flow.
    Chou A; Kegerise MA; King RA
    J Fluid Mech; 2020 Apr; 888():. PubMed ID: 35001967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear wakes behind a row of elongated roughness elements.
    Goldstein ME; Sescu A; Duck PW; Choudhari M
    J Fluid Mech; 2016 Jun; 796():516-557. PubMed ID: 33154603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.