These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 33267280)

  • 1. SIMIT: Subjectively Interesting Motifs in Time Series.
    Deng J; Lijffijt J; Kang B; De Bie T
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disk-aware algorithm for time series motif discovery.
    Mueen A; Keogh E; Zhu Q; Cash SS; Westover MB; Bigdely-Shamlo N
    Data Min Knowl Discov; 2011 Jan; 22(1-2):73-105. PubMed ID: 32153346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Interestingness Measures for Mining Statistically Significant and Novel Clinical Associations from EMRs.
    Abar O; Charnigo RJ; Rayapati A; Kavuluru R
    ACM BCB; 2016 Oct; 2016():587-594. PubMed ID: 28736771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exact Discovery of Time Series Motifs.
    Mueen A; Keogh E; Zhu Q; Cash S; Westover B
    Proc SIAM Int Conf Data Min; 2009; 2009():473-484. PubMed ID: 31656693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding unusual medical time-series subsequences: algorithms and applications.
    Keogh E; Lin J; Fu AW; Van Herle H
    IEEE Trans Inf Technol Biomed; 2006 Jul; 10(3):429-39. PubMed ID: 16871709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Makes an Image Interesting and How Can We Explain It.
    Gardezi M; Fung KH; Baig UM; Ismail M; Kadosh O; Bonneh YS; Sheth BR
    Front Psychol; 2021; 12():668651. PubMed ID: 34539484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothing 3D protein structure motifs through graph mining and amino acid similarities.
    Dhifli W; Saidi R; Nguifo EM
    J Comput Biol; 2014 Feb; 21(2):162-72. PubMed ID: 24117330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping.
    Rakthanmanon T; Campana B; Mueen A; Batista G; Westover B; Zhu Q; Zakaria J; Keogh E
    KDD; 2012 Aug; 2012():262-270. PubMed ID: 31660254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping.
    Rakthanmanon T; Campana B; Mueen A; Batista G; Westover B; Zhu Q; Zakaria J; Keogh E
    ACM Trans Knowl Discov Data; 2013 Sep; 7(3):. PubMed ID: 31607834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HUOPM: High-Utility Occupancy Pattern Mining.
    Gan W; Lin JC; Fournier-Viger P; Chao HC; Yu PS
    IEEE Trans Cybern; 2020 Mar; 50(3):1195-1208. PubMed ID: 30794524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering Multidimensional Motifs in Physiological Signals for Personalized Healthcare.
    Balasubramanian A; Wang J; Prabhakaran B
    IEEE J Sel Top Signal Process; 2016 Aug; 10(5):832-841. PubMed ID: 28191269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combinatorial optimization approach for diverse motif finding applications.
    Zaslavsky E; Singh M
    Algorithms Mol Biol; 2006 Aug; 1():13. PubMed ID: 16916460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.
    Manda P; McCarthy F; Bridges SM
    J Biomed Inform; 2013 Oct; 46(5):849-56. PubMed ID: 23850840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Query-constraint-based mining of association rules for exploratory analysis of clinical datasets in the National Sleep Research Resource.
    Abeysinghe R; Cui L
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):58. PubMed ID: 30066656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PMBC: pattern mining from biological sequences with wildcard constraints.
    Wu X; Zhu X; He Y; Arslan AN
    Comput Biol Med; 2013 Jun; 43(5):481-92. PubMed ID: 23566394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of rule interestingness measures in medical knowledge discovery in databases.
    Ohsaki M; Abe H; Tsumoto S; Yokoi H; Yamaguchi T
    Artif Intell Med; 2007 Nov; 41(3):177-96. PubMed ID: 17851054
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.