These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33267451)

  • 1. Electron Traversal Times in Disordered Graphene Nanoribbons.
    Ridley M; Sentef MA; Tuovinen R
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insights into Electronic Current Flow through Quinone Devices.
    Conrad L; Alcón I; Tremblay JC; Paulus B
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited robustness of edge magnetism in zigzag graphene nanoribbons with electrodes.
    Krompiewski S
    Nanotechnology; 2014 Nov; 25(46):465201. PubMed ID: 25355693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model.
    Wu Y; Childs PA
    Nanoscale Res Lett; 2011 Dec; 6(1):62. PubMed ID: 27502683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices.
    Wan H; Xiao X; Ang YS
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation.
    Krompiewski S
    Nanotechnology; 2011 Nov; 22(44):445201. PubMed ID: 21975438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mach-Zehnder-like interferometry with graphene nanoribbon networks.
    Sanz S; Papior N; Giedke G; Sánchez-Portal D; Brandbyge M; Frederiksen T
    J Phys Condens Matter; 2023 Jun; 35(37):. PubMed ID: 37220757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W
    J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved impurity-invisibility in graphene nanoribbons.
    Tuovinen R; Sentef MA; Gomes da Rocha C; Ferreira MS
    Nanoscale; 2019 Jul; 11(25):12296-12304. PubMed ID: 31211315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal transport and spin-dependent Seebeck effect in parallel step-like zigzag graphene nanoribbon junctions.
    Tan X; Liu L; Du GF; Fu HH
    Phys Chem Chem Phys; 2020 Sep; 22(34):19100-19107. PubMed ID: 32808610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-off analysis between g
    Ahmad MA; Kumar P; Mech BC; Kumar J
    Sci Rep; 2024 May; 14(1):10218. PubMed ID: 38702353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate potential-controlled current switching in graphene Y-junctions.
    Araújo FRV; da Costa DR; Lima FN; Nascimento ACS; Pereira JM
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.